Lindstrom T R, Koenig S H, Boussios T, Bertles J F
Biophys J. 1976 Jun;16(6):679-89. doi: 10.1016/S0006-3495(76)85721-9.
We have measured the intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and in cell-free solutions, and have compared the results with similar data for liganded normal adult hemoglobin. The experiments involve the measurement of the spin-lattice relaxation time T1 of protons of solvent water molecules, as a function of an externally applied static magnetic field. From such data, one can derive a correlation time tauc, for each sample, which is a measure of the time taken for a hemoglobin molecule to randomize its orientation due to Brownian motion. Thus tauc is a measure of the freedom of rotational motion, on a molecular or microscopic level, of hemoglobin molecules. Intermolecular interactions will reduce this freedom of motion and lengthen tauc. We find that oxygenated sickle hemoglobin molecules have an additional intermolecular interaction not found for normal hemoglobin. This extra interaction is increased by the presence of either inorganic phosphate or diphosphoglycerate, and is greater for sickle hemoglobin within cells than in cell-free solutions. By comparing the present results with published data on the viscosity of oxygenated sickle and normal hemoglobin, we conclude that, at concentrations comparable to intracellular values, oxygenated sickle hemoglobin molecules form aggregates several tetramers in size. The possibility exists that these aggregates are the earliest stage of fiber formation itself, the physical basis of the sickling phenomena.
我们测量了细胞中和无细胞溶液中氧化型镰状血红蛋白分子的分子间相互作用,并将结果与配体化正常成人血红蛋白的类似数据进行了比较。实验涉及测量溶剂水分子质子的自旋晶格弛豫时间T1,它是外部施加的静磁场的函数。根据这些数据,可以为每个样品推导出一个相关时间tauc,它是衡量血红蛋白分子由于布朗运动而使其取向随机化所需时间的一个指标。因此,tauc是血红蛋白分子在分子或微观水平上旋转运动自由度的一个量度。分子间相互作用会降低这种运动自由度并延长tauc。我们发现,氧化型镰状血红蛋白分子存在一种正常血红蛋白所没有的额外分子间相互作用。无机磷酸盐或二磷酸甘油酸的存在会增强这种额外相互作用,并且细胞内的镰状血红蛋白的这种相互作用比无细胞溶液中的更强。通过将目前的结果与已发表的关于氧化型镰状血红蛋白和正常血红蛋白粘度的数据进行比较,我们得出结论,在与细胞内浓度相当的浓度下,氧化型镰状血红蛋白分子形成了大小为几个四聚体的聚集体。这些聚集体有可能是纤维形成本身的最早阶段,即镰状现象的物理基础。