Suppr超能文献

免疫学数据现代统计分析指南。

A guide to modern statistical analysis of immunological data.

作者信息

Genser Bernd, Cooper Philip J, Yazdanbakhsh Maria, Barreto Mauricio L, Rodrigues Laura C

出版信息

BMC Immunol. 2007 Oct 26;8:27. doi: 10.1186/1471-2172-8-27.

Abstract

BACKGROUND

The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis.

RESULTS

The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used.

CONCLUSION

This paper will help the immunologist to choose the correct statistical approach for a particular research question.

摘要

背景

在过去十年中,免疫研究中可招募的受试者数量以及可测量的免疫参数数量迅速增加,并且可能会继续扩大。现在,大型复杂的免疫数据集可用于研究复杂的科学问题,但要充分利用此类数据的潜力并获得正确答案,就需要复杂的统计方法。这些方法在许多其他科学学科中都有应用,但总体而言,免疫研究仍使用简单的统计技术进行数据分析。

结果

本文概述了可用于回答不同免疫研究问题的一系列统计方法。我们讨论了免疫研究的具体方面,并给出了与免疫数据相关的典型科学问题的示例。我们回顾了经典的双变量和多变量统计技术(因子分析、聚类分析、判别分析)以及旨在探索因果关系的更先进方法(路径分析/结构方程建模),并说明了它们在免疫数据中的应用。我们展示了每种方法的主要特点、它们可以回答的研究问题类型、可以应用它们的数据类型、每种方法所需的假设以及可以使用的软件。

结论

本文将帮助免疫学家为特定的研究问题选择正确的统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4637/2234437/8a6f1c227ee8/1471-2172-8-27-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验