Suppr超能文献

体外最后一个内含子剪接和3'端加工与转录的功能偶联:聚腺苷酸化信号在决定切割之前与剪接偶联。

Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage.

作者信息

Rigo Frank, Martinson Harold G

机构信息

Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA.

出版信息

Mol Cell Biol. 2008 Jan;28(2):849-62. doi: 10.1128/MCB.01410-07. Epub 2007 Oct 29.

Abstract

We have developed an in vitro transcription system, using HeLa nuclear extract, that supports not only efficient splicing of a multiexon transcript but also efficient cleavage and polyadenylation. In this system, both last-intron splicing and cleavage/polyadenylation are functionally coupled to transcription via the tether of nascent RNA that extends from the terminal exon to the transcribing polymerase downstream. Communication between the 3' splice site and the poly(A) site across the terminal exon is established within minutes of their transcription, and multiple steps leading up to 3'-end processing of this exon can be distinguished. First, the 3' splice site establishes connections to enhance 3'-end processing, while the nascent 3'-end processing apparatus makes reciprocal functional connections to enhance splicing. Then, commitment to poly(A) site cleavage itself occurs and the connections of the 3'-end processing apparatus to the transcribing polymerase are strengthened. Finally, the chemical steps in the processing of the terminal exon take place, beginning with poly(A) site cleavage, continuing with polyadenylation of the 3' end, and then finishing with splicing of the last intron.

摘要

我们利用HeLa细胞核提取物开发了一种体外转录系统,该系统不仅支持多外显子转录本的高效剪接,还支持高效的切割和聚腺苷酸化。在这个系统中,最后一个内含子的剪接以及切割/聚腺苷酸化都通过从末端外显子延伸到下游转录聚合酶的新生RNA的连接与转录功能偶联。3'剪接位点和跨越末端外显子的聚腺苷酸化位点之间的通讯在它们转录后的几分钟内就建立起来了,并且可以区分导致该外显子3'末端加工的多个步骤。首先,3'剪接位点建立连接以增强3'末端加工,而新生的3'末端加工装置进行相互的功能连接以增强剪接。然后,发生对聚腺苷酸化位点切割本身的确定,并且3'末端加工装置与转录聚合酶的连接得到加强。最后,末端外显子加工的化学步骤开始,从聚腺苷酸化位点切割开始,接着是3'末端的聚腺苷酸化,然后以最后一个内含子的剪接结束。

相似文献

2
An active role for splicing in 3'-end formation.
Wiley Interdiscip Rev RNA. 2011 Jul-Aug;2(4):459-70. doi: 10.1002/wrna.68. Epub 2010 Dec 16.
3
An intron enhancer recognized by splicing factors activates polyadenylation.
Genes Dev. 1996 Jan 15;10(2):208-19. doi: 10.1101/gad.10.2.208.
4
8
In vitro polyadenylation is stimulated by the presence of an upstream intron.
Genes Dev. 1990 Sep;4(9):1552-9. doi: 10.1101/gad.4.9.1552.
9
Crosstalk between mRNA 3' end processing and transcription initiation.
Mol Cell. 2010 Nov 12;40(3):410-22. doi: 10.1016/j.molcel.2010.10.012.
10
Splice site skipping in polyomavirus late pre-mRNA processing.
J Virol. 1991 Dec;65(12):6637-44. doi: 10.1128/JVI.65.12.6637-6644.1991.

引用本文的文献

1
The regulation and function of post-transcriptional RNA splicing.
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
2
A Novel Mechanism for Transcription Termination in the Locus of .
Biology (Basel). 2024 Nov 29;13(12):994. doi: 10.3390/biology13120994.
3
Coupling of alternative splicing and alternative polyadenylation.
Acta Biochim Biophys Sin (Shanghai). 2024 Dec 3;57(1):22-32. doi: 10.3724/abbs.2024211.
5
The polyA tail facilitates splicing of last introns with weak 3' splice sites via PABPN1.
EMBO Rep. 2023 Oct 9;24(10):e57128. doi: 10.15252/embr.202357128. Epub 2023 Sep 4.
6
Pre-mRNA splicing and its cotranscriptional connections.
Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.
7
Known sequence features explain half of all human gene ends.
NAR Genom Bioinform. 2023 Apr 5;5(2):lqad031. doi: 10.1093/nargab/lqad031. eCollection 2023 Jun.
8
BESST: a novel LncRNA knockout strategy with less genome perturbance.
Nucleic Acids Res. 2023 May 22;51(9):e49. doi: 10.1093/nar/gkad197.
9
Mechanism of cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies.
Science. 2023 Mar 17;379(6637):1140-1149. doi: 10.1126/science.abq5622. Epub 2023 Mar 16.

本文引用的文献

1
Concurrent splicing and transcription are not sufficient to enhance splicing efficiency.
RNA. 2007 Sep;13(9):1546-57. doi: 10.1261/rna.595907. Epub 2007 Jul 13.
3
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing.
Mol Cell. 2007 Jun 22;26(6):867-81. doi: 10.1016/j.molcel.2007.05.036.
4
The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase.
Nat Struct Mol Biol. 2007 Jul;14(7):662-9. doi: 10.1038/nsmb1253. Epub 2007 Jun 17.
6
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
Nat Struct Mol Biol. 2006 Nov;13(11):973-80. doi: 10.1038/nsmb1155. Epub 2006 Oct 8.
7
An interaction between U2AF 65 and CF I(m) links the splicing and 3' end processing machineries.
EMBO J. 2006 Oct 18;25(20):4854-64. doi: 10.1038/sj.emboj.7601331. Epub 2006 Oct 5.
8
Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
Nat Struct Mol Biol. 2006 Sep;13(9):815-22. doi: 10.1038/nsmb1135. Epub 2006 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验