Suppr超能文献

多聚 A 尾通过 PABPN1 促进弱 3' 剪接位点的最后内含子的剪接。

The polyA tail facilitates splicing of last introns with weak 3' splice sites via PABPN1.

机构信息

College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China.

Key Laboratory of RNA Science and Engineering, Chinese Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

出版信息

EMBO Rep. 2023 Oct 9;24(10):e57128. doi: 10.15252/embr.202357128. Epub 2023 Sep 4.

Abstract

The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.

摘要

mRNA 的 polyA 尾巴在 RNA 代谢的许多方面都很重要。然而,它是否以及如何调节前体 mRNA 的剪接仍然未知。在这里,我们报告说,在 HeLa 细胞中,polyA 尾巴通过核 polyA 结合蛋白 PABPN1 作为最后一个内含子的剪接增强子发挥作用。PABPN1 耗竭诱导一组具有较弱 3'剪接位点的内含子保留,它们表现出强烈的 3'-末端偏向性,主要位于核斑点中。polyA 尾巴对于 PABPN1 增强的最后一个内含子剪接是必不可少的,并且以长度依赖性方式发挥作用。将 PABPN1 连接到非多聚腺苷酸化的转录本也促进剪接,表明 PABPN1 在剪接调节中具有直接作用。使用 TurboID-MS,我们构建了 PABPN1 相互作用组,包括许多剪接体和 RNA 结合蛋白。具体来说,PABPN1 可以通过与 RBM27 的卷曲螺旋和 RRM 结构域相互作用,募集 RBM26&27 来促进剪接。PABPN1 调节的末端内含子剪接在小鼠中是保守的。总之,我们的研究建立了一种通过 polyA 尾巴和 PABPN1 进行的新型转录后剪接调节模式。

相似文献

1
The polyA tail facilitates splicing of last introns with weak 3' splice sites via PABPN1.
EMBO Rep. 2023 Oct 9;24(10):e57128. doi: 10.15252/embr.202357128. Epub 2023 Sep 4.
4
Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation.
Mol Cell Biol. 2015 Jul;35(14):2503-17. doi: 10.1128/MCB.00070-15. Epub 2015 May 11.
6
Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs.
PLoS Genet. 2015 Oct 20;11(10):e1005610. doi: 10.1371/journal.pgen.1005610. eCollection 2015 Oct.
8
Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1.
PLoS Genet. 2012;8(11):e1003078. doi: 10.1371/journal.pgen.1003078. Epub 2012 Nov 15.
10
Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts.
Mol Cell. 2016 Nov 3;64(3):520-533. doi: 10.1016/j.molcel.2016.09.025. Epub 2016 Oct 27.

引用本文的文献

1
PABPN1 as a pan-cancer biomarker: prognostic significance and association with tumor immune microenvironment.
Front Immunol. 2025 Jun 18;16:1553527. doi: 10.3389/fimmu.2025.1553527. eCollection 2025.
2
RNA Binding to CCRRM of PABPN1 Induces Conformation Change.
Biology (Basel). 2025 Apr 17;14(4):432. doi: 10.3390/biology14040432.
3
The regulation and function of post-transcriptional RNA splicing.
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
4
Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle.
RNA Biol. 2025 Dec;22(1):1-12. doi: 10.1080/15476286.2025.2483001. Epub 2025 Mar 24.
5
Coupling of alternative splicing and alternative polyadenylation.
Acta Biochim Biophys Sin (Shanghai). 2024 Dec 3;57(1):22-32. doi: 10.3724/abbs.2024211.
6
RNA 3'end tailing safeguards cells against products of pervasive transcription termination.
Nat Commun. 2024 Dec 1;15(1):10446. doi: 10.1038/s41467-024-54834-6.
8
Study of the RNA splicing kinetics via in vivo 5-EU labeling.
RNA. 2024 Sep 16;30(10):1356-1373. doi: 10.1261/rna.079937.123.

本文引用的文献

1
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns.
Mol Cell. 2022 Mar 3;82(5):1035-1052.e9. doi: 10.1016/j.molcel.2021.12.010. Epub 2022 Feb 18.
2
Alternative polyadenylation by sequential activation of distal and proximal PolyA sites.
Nat Struct Mol Biol. 2022 Jan;29(1):21-31. doi: 10.1038/s41594-021-00709-z. Epub 2022 Jan 10.
4
Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022.
Nucleic Acids Res. 2022 Jan 7;50(D1):D27-D38. doi: 10.1093/nar/gkab951.
5
Global view on the metabolism of RNA poly(A) tails in yeast Saccharomyces cerevisiae.
Nat Commun. 2021 Aug 16;12(1):4951. doi: 10.1038/s41467-021-25251-w.
6
Falco: high-speed FastQC emulation for quality control of sequencing data.
F1000Res. 2019 Nov 7;8:1874. doi: 10.12688/f1000research.21142.2. eCollection 2019.
7
Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision.
Curr Opin Genet Dev. 2021 Apr;67:67-76. doi: 10.1016/j.gde.2020.11.002. Epub 2020 Dec 5.
8
PABPN1L mediates cytoplasmic mRNA decay as a placeholder during the maternal-to-zygotic transition.
EMBO Rep. 2020 Aug 5;21(8):e49956. doi: 10.15252/embr.201949956. Epub 2020 Jun 17.
9
The SF3b complex: splicing and beyond.
Cell Mol Life Sci. 2020 Sep;77(18):3583-3595. doi: 10.1007/s00018-020-03493-z. Epub 2020 Mar 5.
10
Structure of an active human histone pre-mRNA 3'-end processing machinery.
Science. 2020 Feb 7;367(6478):700-703. doi: 10.1126/science.aaz7758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验