Berres M, Zehnder A, Bläsi S, Monsch A U
RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Germany.
Stat Med. 2008 May 10;27(10):1777-90. doi: 10.1002/sim.3120.
Diagnostic tests yield measurements on very different types of scales. Quantitative scales may consist of non-negative integers, either unbounded or bounded, with a fixed number of different values, or they may consist of continuous or percentage values. Remembering a different threshold value for each diagnostic variable would be cumbersome, in particular if covariates have to be taken into account. As a convenient way to overcome such problems we propose to compute z-scores for all measurements. They will be adjusted for covariates so that any individual can be judged on any test result on one single scale with an appropriate standard normal quantile as threshold. Two issues need to be addressed: Selection of covariates in the regression model which delivers the adjustment and normality of the residuals. The first will be treated by cross-validation and the latter by applying an appropriate transformation. We apply this methodology to neuropsychological tests and adjust for age, length of education and sex. Normality of residuals is needed on the diagnostically relevant side only. This allows to use parametric transformations, which can be easily implemented, e.g. in database systems. Since we have measurements at baseline and at follow-up we also analyze change values in a similar manner. For ease of interpretation, we transform the resulting z-scores back to the original scale.
诊断测试会产生基于非常不同类型量表的测量结果。定量量表可能由非负整数组成,这些整数可以是无界的或有界的,具有固定数量的不同值,或者它们可能由连续值或百分比值组成。记住每个诊断变量的不同阈值会很麻烦,特别是如果必须考虑协变量的话。作为克服此类问题的一种便捷方法,我们建议为所有测量值计算z分数。它们将针对协变量进行调整,以便可以在一个单一量表上根据任何测试结果对任何个体进行判断,并以适当的标准正态分位数作为阈值。需要解决两个问题:在提供调整的回归模型中协变量的选择以及残差的正态性。第一个问题将通过交叉验证来处理,第二个问题将通过应用适当的变换来处理。我们将这种方法应用于神经心理学测试,并针对年龄、受教育年限和性别进行调整。仅在诊断相关方面需要残差的正态性。这允许使用可以轻松实现的参数变换,例如在数据库系统中。由于我们在基线和随访时有测量值,我们也以类似的方式分析变化值。为便于解释,我们将得到的z分数转换回原始量表。