Suppr超能文献

混合效应位置尺度模型在生态瞬时评估(EMA)数据分析中的应用。

An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data.

作者信息

Hedeker Donald, Mermelstein Robin J, Demirtas Hakan

机构信息

School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, USA.

出版信息

Biometrics. 2008 Jun;64(2):627-34. doi: 10.1111/j.1541-0420.2007.00924.x. Epub 2007 Oct 26.

Abstract

For longitudinal data, mixed models include random subject effects to indicate how subjects influence their responses over repeated assessments. The error variance and the variance of the random effects are usually considered to be homogeneous. These variance terms characterize the within-subjects (i.e., error variance) and between-subjects (i.e., random-effects variance) variation in the data. In studies using ecological momentary assessment (EMA), up to 30 or 40 observations are often obtained for each subject, and interest frequently centers around changes in the variances, both within and between subjects. In this article, we focus on an adolescent smoking study using EMA where interest is on characterizing changes in mood variation. We describe how covariates can influence the mood variances, and also extend the standard mixed model by adding a subject-level random effect to the within-subject variance specification. This permits subjects to have influence on the mean, or location, and variability, or (square of the) scale, of their mood responses. Additionally, we allow the location and scale random effects to be correlated. These mixed-effects location scale models have useful applications in many research areas where interest centers on the joint modeling of the mean and variance structure.

摘要

对于纵向数据,混合模型包含随机个体效应,以表明个体在重复评估中如何影响其反应。误差方差和随机效应的方差通常被认为是齐性的。这些方差项刻画了数据中的个体内(即误差方差)和个体间(即随机效应方差)变异。在使用生态瞬时评估(EMA)的研究中,每个个体通常会获得多达30或40次观测值,并且关注点常常集中在个体内和个体间方差的变化上。在本文中,我们聚焦于一项使用EMA的青少年吸烟研究,其关注点在于刻画情绪变异的变化。我们描述了协变量如何影响情绪方差,并且还通过在个体内方差规范中添加个体水平的随机效应来扩展标准混合模型。这使得个体能够对其情绪反应的均值或位置以及变异性或尺度(的平方)产生影响。此外,我们允许位置和尺度随机效应相关。这些混合效应位置尺度模型在许多研究领域都有有用的应用,这些领域的关注点集中在均值和方差结构的联合建模上。

相似文献

1
An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Biometrics. 2008 Jun;64(2):627-34. doi: 10.1111/j.1541-0420.2007.00924.x. Epub 2007 Oct 26.
3
A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Stat Interface. 2009;2(4):391-401. doi: 10.4310/sii.2009.v2.n4.a1.
4
A three-level mixed-effects location scale model with an application to ecological momentary assessment data.
Stat Med. 2012 Nov 20;31(26):3192-210. doi: 10.1002/sim.5393. Epub 2012 Aug 3.
5
A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data.
Stat Med. 2018 Jun 15;37(13):2108-2119. doi: 10.1002/sim.7627. Epub 2018 Feb 26.
8
Modeling mood variation and covariation among adolescent smokers: application of a bivariate location-scale mixed-effects model.
Nicotine Tob Res. 2014 May;16 Suppl 2(Suppl 2):S151-8. doi: 10.1093/ntr/ntt143. Epub 2013 Sep 19.
9
A Bivariate Mixed-Effects Location-Scale Model with application to Ecological Momentary Assessment (EMA) data.
Health Serv Outcomes Res Methodol. 2014 Dec;14(4):194-212. doi: 10.1007/s10742-014-0126-9.
10
Extending the mixed-effects model to consider within-subject variance for Ecological Momentary Assessment data.
Stat Med. 2020 Feb 28;39(5):577-590. doi: 10.1002/sim.8429. Epub 2019 Dec 17.

引用本文的文献

1
The construct validity of daily cognitive variability.
Psychol Aging. 2025 Aug 21. doi: 10.1037/pag0000932.
3
How's Your Memory? Convergence of Objective and Subjective Memory Performance Using Ambulatory Assessment in Middle Age.
Innov Aging. 2025 Apr 23;9(6):igaf037. doi: 10.1093/geroni/igaf037. eCollection 2025.
4
6
Mixed-Effects Location Scale Models for Joint Modeling School Value-Added Effects on the Mean and Variance of Student Achievement.
J Educ Behav Stat. 2024 Dec;49(6):879-911. doi: 10.3102/10769986231210808. Epub 2023 Nov 27.
8
Bayesian Hierarchical Modeling for Variance Estimation in Biopharmaceutical Processes.
Bioengineering (Basel). 2025 Feb 17;12(2):193. doi: 10.3390/bioengineering12020193.
10
Short-term Frailty Index Fluctuations in Older Adults: Noise or Signal?
J Gerontol A Biol Sci Med Sci. 2024 Dec 11;80(1). doi: 10.1093/gerona/glae262.

本文引用的文献

1
THE DISTRIBUTION OF PHENOTYPIC VARIANCE WITH INBREEDING.
Evolution. 1999 Aug;53(4):1143-1156. doi: 10.1111/j.1558-5646.1999.tb04528.x.
2
Assessing psychological change in adulthood: an overview of methodological issues.
Psychol Aging. 2003 Dec;18(4):639-57. doi: 10.1037/0882-7974.18.4.639.
3
Intraindividual variability and short-term change. Commentary.
Gerontology. 2004 Jan-Feb;50(1):44-7. doi: 10.1159/000074389.
4
Intraindividual variability, change, and aging: conceptual and analytical issues.
Gerontology. 2004 Jan-Feb;50(1):7-11. doi: 10.1159/000074382.
5
A potentially useful distribution model for dietary intake data.
Public Health Nutr. 2003 Aug;6(5):513-9. doi: 10.1079/PHN2003459.
6
Diary methods: capturing life as it is lived.
Annu Rev Psychol. 2003;54:579-616. doi: 10.1146/annurev.psych.54.101601.145030. Epub 2002 Jun 10.
9
Individual differences in intraperson variability in mood.
J Pers Soc Psychol. 1994 Apr;66(4):712-21. doi: 10.1037//0022-3514.66.4.712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验