Suppr超能文献

大鼠皮质纹状体脑片中GABA能和胆碱能中间神经元的细胞特异性峰电位时间依赖性可塑性

Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.

作者信息

Fino Elodie, Deniau Jean-Michel, Venance Laurent

机构信息

Dynamics and Pathophysiology of Neural Networks, INSERM U-667, Collège de France, 75231 Paris Cedex 05, France.

出版信息

J Physiol. 2008 Jan 1;586(1):265-82. doi: 10.1113/jphysiol.2007.144501. Epub 2007 Nov 1.

Abstract

Striatum, the main input nucleus of basal ganglia, is involved in the learning of cognitive and motor sequences in response to environmental stimuli. Striatal output neurons (medium spiny neurons, MSNs) integrate cortical activity and the two main classes of interneurons (GABAergic and cholinergic interneurons) tightly regulate the corticostriatal information transfer. We have explored the transmission between cortex and striatal interneurons and their capability to develop activity-dependent long-term plasticity based on the quasi-coincident cortical and striatal activities (spike-timing-dependent plasticity, STDP). We have observed glutamatergic monosynaptic connections between cortical cells and both striatal interneurons. Excitatory postsynaptic current latencies and rise times revealed that a cortical stimulation activates GABAergic interneurons before cholinergic, and both interneurons before MSNs. In addition, we have observed that striatal interneurons are able to develop bidirectional long-term plasticity and that there is a cell-specificity of STDP among striatal interneurons. Indeed, in GABAergic interneurons, long-term depression (LTD) and long-term potentiation (LTP) are induced by post-pre and pre-post STDP protocols, respectively. Cholinergic interneurons displayed a partially reversed STDP when compared to GABAergic interneurons: post-pre protocols induced LTP as well as LTD (the induction of either LTP or LTD is correlated with rheobase) and pre-post protocols induced LTD. The cell-specificity of STDP also concerned the receptors activated for the induction of LTP and LTD in GABAergic and cholinergic interneurons: in GABAergic interneurons LTP and LTD required NMDA receptor-activation whereas, in cholinergic interneurons, LTP was underlain by NMDA receptor-activation and LTD by metabotropic glutamate receptors.

摘要

纹状体是基底神经节的主要输入核团,参与对环境刺激做出反应时认知和运动序列的学习。纹状体输出神经元(中等棘状神经元,MSNs)整合皮质活动,而两类主要的中间神经元(γ-氨基丁酸能和胆碱能中间神经元)紧密调节皮质-纹状体信息传递。我们研究了皮质与纹状体中间神经元之间的传递以及它们基于准同时的皮质和纹状体活动(尖峰时间依赖可塑性,STDP)产生活动依赖的长期可塑性的能力。我们观察到皮质细胞与两类纹状体中间神经元之间存在谷氨酸能单突触连接。兴奋性突触后电流潜伏期和上升时间表明,皮质刺激先激活γ-氨基丁酸能中间神经元,然后是胆碱能中间神经元,两者均先于中等棘状神经元被激活。此外,我们观察到纹状体中间神经元能够产生双向长期可塑性,并且在纹状体中间神经元中存在STDP的细胞特异性。事实上,在γ-氨基丁酸能中间神经元中,长期抑制(LTD)和长期增强(LTP)分别由前-后和后-前STDP协议诱导产生。与γ-氨基丁酸能中间神经元相比,胆碱能中间神经元表现出部分相反的STDP:后-前协议诱导LTP以及LTD(LTP或LTD的诱导与阈强度相关),前-后协议诱导LTD。STDP的细胞特异性还涉及γ-氨基丁酸能和胆碱能中间神经元中诱导LTP和LTD所激活的受体:在γ-氨基丁酸能中间神经元中,LTP和LTD需要NMDA受体激活,而在胆碱能中间神经元中,LTP由NMDA受体激活介导,LTD由代谢型谷氨酸受体介导。

相似文献

1
Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
J Physiol. 2008 Jan 1;586(1):265-82. doi: 10.1113/jphysiol.2007.144501. Epub 2007 Nov 1.
2
Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
Neuroscience. 2009 Jun 2;160(4):744-54. doi: 10.1016/j.neuroscience.2009.03.015. Epub 2009 Mar 19.
3
Bidirectional activity-dependent plasticity at corticostriatal synapses.
J Neurosci. 2005 Dec 7;25(49):11279-87. doi: 10.1523/JNEUROSCI.4476-05.2005.
4
Spike-timing dependent plasticity in striatal interneurons.
Neuropharmacology. 2011 Apr;60(5):780-8. doi: 10.1016/j.neuropharm.2011.01.023. Epub 2011 Jan 22.
6
Spike-timing dependent plasticity in the striatum.
Front Synaptic Neurosci. 2010 Jun 10;2:6. doi: 10.3389/fnsyn.2010.00006. eCollection 2010.
7
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
J Neurosci. 2008 Mar 5;28(10):2435-46. doi: 10.1523/JNEUROSCI.4402-07.2008.
8
Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity.
J Physiol. 2010 Aug 15;588(Pt 16):3045-62. doi: 10.1113/jphysiol.2010.188466. Epub 2010 Jul 5.
9
Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum.
Neuropharmacology. 2017 Jul 15;121:261-277. doi: 10.1016/j.neuropharm.2017.04.012. Epub 2017 Apr 10.

引用本文的文献

1
Cholecystokinin Modulates Corticostriatal Transmission and Plasticity in Rodents.
eNeuro. 2025 Mar 12;12(3). doi: 10.1523/ENEURO.0251-24.2025. Print 2025 Mar.
2
Astrocytes Mediate Psychostimulant-Induced Alterations of Spike-Timing Dependent Synaptic Plasticity.
Glia. 2025 May;73(5):1051-1067. doi: 10.1002/glia.24672. Epub 2025 Jan 13.
3
A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2410828121. doi: 10.1073/pnas.2410828121. Epub 2024 Oct 4.
4
Impairment of synaptic plasticity in the primary somatosensory cortex in a model of diabetic mice.
Front Cell Neurosci. 2024 Jul 30;18:1444395. doi: 10.3389/fncel.2024.1444395. eCollection 2024.
5
Anti-Hebbian plasticity drives sequence learning in striatum.
Commun Biol. 2024 May 9;7(1):555. doi: 10.1038/s42003-024-06203-8.
6
Enhancing reinforcement learning models by including direct and indirect pathways improves performance on striatal dependent tasks.
PLoS Comput Biol. 2023 Aug 18;19(8):e1011385. doi: 10.1371/journal.pcbi.1011385. eCollection 2023 Aug.
7
Sensory Reinforced Corticostriatal Plasticity.
Curr Neuropharmacol. 2024;22(9):1513-1527. doi: 10.2174/1570159X21666230801110359.
8
Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology.
Front Netw Physiol. 2022 Mar 4;2:817524. doi: 10.3389/fnetp.2022.817524. eCollection 2022.
9
Inferring the temporal evolution of synaptic weights from dynamic functional connectivity.
Brain Inform. 2022 Dec 8;9(1):28. doi: 10.1186/s40708-022-00178-0.
10
Alternation of Neuronal Feature Selectivity Induced by Paired Optogenetic-Mechanical Stimulation in the Barrel Cortex.
Front Neural Circuits. 2021 Sep 1;15:708459. doi: 10.3389/fncir.2021.708459. eCollection 2021.

本文引用的文献

1
Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons.
Neurosci Res. 2007 Jul;58(3):305-16. doi: 10.1016/j.neures.2007.04.002. Epub 2007 Apr 7.
3
Leading tonically active neurons of the striatum from reward detection to context recognition.
Trends Neurosci. 2007 Jun;30(6):299-306. doi: 10.1016/j.tins.2007.03.011. Epub 2007 Apr 8.
4
Cholinergic interneurons control the excitatory input to the striatum.
J Neurosci. 2007 Jan 10;27(2):391-400. doi: 10.1523/JNEUROSCI.3709-06.2007.
5
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
J Neurosci. 2006 Oct 11;26(41):10420-9. doi: 10.1523/JNEUROSCI.2650-06.2006.
6
Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses.
Neuropharmacology. 2007 Jan;52(1):176-84. doi: 10.1016/j.neuropharm.2006.07.021. Epub 2006 Aug 8.
8
Spike timing-dependent plasticity: from synapse to perception.
Physiol Rev. 2006 Jul;86(3):1033-48. doi: 10.1152/physrev.00030.2005.
9
The role of the basal ganglia in habit formation.
Nat Rev Neurosci. 2006 Jun;7(6):464-76. doi: 10.1038/nrn1919.
10
Novel presynaptic mechanisms for coincidence detection in synaptic plasticity.
Curr Opin Neurobiol. 2006 Jun;16(3):312-22. doi: 10.1016/j.conb.2006.05.008. Epub 2006 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验