Suppr超能文献

使用连续血糖监测检测进餐:对人工β细胞的意义。

Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.

作者信息

Dassau Eyal, Bequette B Wayne, Buckingham Bruce A, Doyle Francis J

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA.

出版信息

Diabetes Care. 2008 Feb;31(2):295-300. doi: 10.2337/dc07-1293. Epub 2007 Oct 31.

Abstract

OBJECTIVE

The purpose of this study was to introduce a novel meal detection algorithm (MDA) to be used as part of an artificial beta-cell that uses a continuous glucose monitor (CGM).

RESEARCH DESIGN AND METHODS

We developed our MDA on a dataset of 26 meal events using records from 19 children aged 1-6 years who used the MiniMed CGMS Gold. We then applied this algorithm to CGM records from a DirecNet pilot study of the FreeStyle Navigator continuous glucose sensor. During a research center admission, breakfast insulin was withheld for 1 h, and discrete glucose levels were obtained every 10 min after the meal.

RESULTS

Based on the Navigator readings, the MDA detected a meal at a mean time of 30 min from the onset of eating, at which time the mean serum glucose was 21 mg/dl above baseline (range 2-36 mg/dl), and >90% of meals were detected before the glucose had risen 40 mg/dl from baseline.

CONCLUSIONS

The MDA will enable automated insulin dosing in response to meals, facilitating the development of an artificial pancreas.

摘要

目的

本研究旨在引入一种新型进餐检测算法(MDA),作为使用连续血糖监测仪(CGM)的人工β细胞的一部分。

研究设计与方法

我们利用19名年龄在1至6岁使用美敦力CGMS Gold的儿童记录,在一个包含26次进餐事件的数据集上开发了我们的MDA。然后我们将此算法应用于来自FreeStyle Navigator连续血糖传感器的DirecNet试点研究的CGM记录。在研究中心住院期间,早餐胰岛素停用1小时,餐后每10分钟获取离散血糖水平。

结果

基于Navigator读数,MDA在进食开始后平均30分钟时检测到进餐,此时平均血糖比基线高21mg/dl(范围为2 - 36mg/dl),且超过90%的进餐在血糖从基线升高40mg/dl之前被检测到。

结论

MDA将能够根据进餐自动进行胰岛素给药,促进人工胰腺的开发。

相似文献

1
Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.
Diabetes Care. 2008 Feb;31(2):295-300. doi: 10.2337/dc07-1293. Epub 2007 Oct 31.
5
Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.
Diabetes Technol Ther. 2010 Jan;12(1):81-8. doi: 10.1089/dia.2009.0076.
6
Automated meal detection from continuous glucose monitor data through simulation and explanation.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1592-1599. doi: 10.1093/jamia/ocz159.
7
Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series.
IEEE Trans Biomed Eng. 2007 May;54(5):931-7. doi: 10.1109/TBME.2006.889774.
9
The nuts and bolts of achieving end points with real-time continuous glucose monitoring.
Diabetes Care. 2008 Feb;31 Suppl 2:S146-9. doi: 10.2337/dc08-s238.
10
Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1550-60. doi: 10.1109/TBME.2012.2188893. Epub 2012 Feb 24.

引用本文的文献

1
Mealtime prediction using wearable insulin pump data to support diabetes management.
Sci Rep. 2024 Sep 9;14(1):21013. doi: 10.1038/s41598-024-71630-w.
3
An automatic deep reinforcement learning bolus calculator for automated insulin delivery systems.
Sci Rep. 2024 Jul 2;14(1):15245. doi: 10.1038/s41598-024-62912-4.
6
Continuous glucose monitoring for automatic real-time assessment of eating events and nutrition: a scoping review.
Front Nutr. 2024 Jan 8;10:1308348. doi: 10.3389/fnut.2023.1308348. eCollection 2023.
7
Data-driven meal events detection using blood glucose response patterns.
BMC Med Inform Decis Mak. 2023 Dec 8;23(1):282. doi: 10.1186/s12911-023-02380-4.
9
Insulin Delivery Hardware: Pumps and Pens.
Diabetes Technol Ther. 2023 Feb;25(S1):S30-S43. doi: 10.1089/dia.2023.2503.
10
In-silico evaluation of an artificial pancreas achieving automatic glycemic control in patients with type 1 diabetes.
Front Endocrinol (Lausanne). 2023 Jan 30;14:1115436. doi: 10.3389/fendo.2023.1115436. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验