Suppr超能文献

葡萄糖浓度可根据连续葡萄糖监测传感器的时间序列提前预测。

Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series.

作者信息

Sparacino Giovanni, Zanderigo Francesca, Corazza Stefano, Maran Alberto, Facchinetti Andrea, Cobelli Claudio

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

IEEE Trans Biomed Eng. 2007 May;54(5):931-7. doi: 10.1109/TBME.2006.889774.

Abstract

A clinically important task in diabetes management is the prevention of hypo/hyperglycemic events. In this proof-of-concept paper, we assess the feasibility of approaching the problem with continuous glucose monitoring (CGM) devices. In particular, we study the possibility to predict ahead in time glucose levels by exploiting their recent history monitored every 3 min by a minimally invasive CGM system, the Glucoday, in 28 type 1 diabetic volunteers for 48 h. Simple prediction strategies, based on the description of past glucose data by either a first-order polynomial or a first-order autoregressive (AR) model, both with time-varying parameters determined by weighted least squares, are considered. Results demonstrate that, even by using these simple methods, glucose can be predicted ahead in time, e.g., with a prediction horizon of 30 min crossing of the hypoglycemic threshold can be predicted 20-25 min ahead in time, a sufficient margin to mitigate the event by sugar ingestion.

摘要

糖尿病管理中的一项临床重要任务是预防低血糖/高血糖事件。在这篇概念验证论文中,我们评估了使用连续血糖监测(CGM)设备解决该问题的可行性。具体而言,我们研究了通过利用微创CGM系统Glucoday每3分钟监测一次的近期血糖历史记录,提前预测28名1型糖尿病志愿者48小时内血糖水平的可能性。考虑了基于一阶多项式或一阶自回归(AR)模型描述过去血糖数据的简单预测策略,这两种模型的时变参数均由加权最小二乘法确定。结果表明,即使使用这些简单方法,血糖也可以提前预测,例如,在30分钟的预测范围内,低血糖阈值的跨越可以提前20 - 25分钟预测,这有足够的时间余量通过摄入糖分来减轻该事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验