Suppr超能文献

肌动蛋白驱动酵母极性位点运动的机制见解。

Mechanistic insights into actin-driven polarity site movement in yeast.

机构信息

Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710.

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710.

出版信息

Mol Biol Cell. 2020 May 1;31(10):1085-1102. doi: 10.1091/mbc.E20-01-0040. Epub 2020 Mar 18.

Abstract

Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, , relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.

摘要

定向的细胞生长或迁移对于许多真核细胞的发育和功能至关重要。这些细胞会形成一个动态的“前端”(也称为“极性位点”),可以改变方向。极性的建立涉及极性调节因子的自动催化积累,包括保守的 Rho 家族 GTPase Cdc42,但极性重定向的机制仍知之甚少。可处理的模式酵母,当寻找交配伙伴时会重新定位其极性位点。重新定位需要聚合的肌动蛋白,并且被认为涉及到肌动蛋白介导的囊泡运输到极性位点。在这项研究中,我们对自发的极性位点运动作为一种搜索过程进行了定量描述,并使用了一种机械计算模型,该模型将极性蛋白生化相互作用与囊泡运输相结合,以探究各种过程如何影响极性位点的运动。我们的发现确定了酵母囊泡运输中两个以前有记录的特征与这种运动特别相关:胞吐作用的紧密空间聚焦增强了运动的方向持久性,并且 Cdc42 定向的 GTP 酶激活蛋白与分泌囊泡的结合增加了移动的距离。此外,我们认为,为了充分解释体内极性位点运动的特征,可能需要超越简单泊松动力学的胞吐作用速率的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b3c/7346724/2023c0dcfd62/mbc-31-1085-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验