Suppr超能文献

通过肌动蛋白驱动的极化位点游动来跟踪浅层化学梯度。

Tracking shallow chemical gradients by actin-driven wandering of the polarization site.

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Curr Biol. 2013 Jan 7;23(1):32-41. doi: 10.1016/j.cub.2012.11.014. Epub 2012 Nov 29.

Abstract

BACKGROUND

Many cells are remarkably proficient at tracking very shallow chemical gradients, despite considerable noise from stochastic receptor-ligand interactions. Motile cells appear to undergo a biased random walk: spatial noise in receptor activity may determine the instantaneous direction, but because noise is spatially unbiased, it is filtered out by time averaging, resulting in net movement upgradient. How nonmotile cells might filter out noise is unknown.

RESULTS

Using yeast chemotropic mating as a model, we demonstrate that a polarized patch of polarity regulators "wanders" along the cortex during gradient tracking. Computational and experimental findings suggest that actin-directed membrane traffic contributes to wandering by diluting local polarity factors. The pheromone gradient appears to bias wandering via interactions between receptor-activated Gβγ and polarity regulators. Artificially blocking patch wandering impairs gradient tracking.

CONCLUSIONS

We suggest that the polarity patch undergoes an intracellular biased random walk that enables noise filtering by time averaging, allowing nonmotile cells to track shallow gradients.

摘要

背景

尽管随机受体-配体相互作用会产生相当大的噪声,但许多细胞在跟踪非常浅的化学梯度方面非常出色。游动细胞似乎经历了一种偏向的随机漫步:受体活性的空间噪声可能决定瞬时方向,但由于噪声在空间上是无偏的,因此会通过时间平均而被过滤掉,从而导致向上的净运动。非运动细胞如何过滤掉噪声尚不清楚。

结果

我们使用酵母化学趋向性交配作为模型,证明了在梯度跟踪过程中,极性调节剂的极化斑块沿着皮层“游荡”。计算和实验结果表明,肌动蛋白定向膜运输通过稀释局部极性因子有助于游动。信息素梯度似乎通过受体激活的 Gβγ 和极性调节剂之间的相互作用来偏向游动。人为地阻断斑块游动会损害梯度跟踪。

结论

我们认为,极性斑块经历了一种细胞内偏向的随机漫步,通过时间平均进行噪声过滤,使非运动细胞能够跟踪浅的梯度。

相似文献

7
Mechanistic insights into actin-driven polarity site movement in yeast.肌动蛋白驱动酵母极性位点运动的机制见解。
Mol Biol Cell. 2020 May 1;31(10):1085-1102. doi: 10.1091/mbc.E20-01-0040. Epub 2020 Mar 18.
9
A Cellular System for Spatial Signal Decoding in Chemical Gradients.一种用于化学梯度中空间信号解码的细胞系统。
Dev Cell. 2015 Nov 23;35(4):458-70. doi: 10.1016/j.devcel.2015.10.013. Epub 2015 Nov 12.

引用本文的文献

5
Patterning of the cell cortex by Rho GTPases.Rho GTPases 对细胞皮层的模式化作用。
Nat Rev Mol Cell Biol. 2024 Apr;25(4):290-308. doi: 10.1038/s41580-023-00682-z. Epub 2024 Jan 3.
8
Cell wall dynamics stabilize tip growth in a filamentous fungus.细胞壁动力学稳定丝状真菌的顶端生长。
PLoS Biol. 2023 Jan 17;21(1):e3001981. doi: 10.1371/journal.pbio.3001981. eCollection 2023 Jan.

本文引用的文献

1
Cell polarization and cytokinesis in budding yeast.出芽酵母中的细胞极化和胞质分裂。
Genetics. 2012 Jun;191(2):347-87. doi: 10.1534/genetics.111.132886.
3
Mechanistic mathematical model of polarity in yeast.酵母极性的机制数学模型。
Mol Biol Cell. 2012 May;23(10):1998-2013. doi: 10.1091/mbc.E11-10-0837. Epub 2012 Mar 21.
5
Symmetry breaking and the establishment of cell polarity in budding yeast.出芽酵母中对称性的破坏和细胞极性的建立。
Curr Opin Genet Dev. 2011 Dec;21(6):740-6. doi: 10.1016/j.gde.2011.09.007. Epub 2011 Sep 28.
6
Cortical actin dynamics driven by formins and myosin V.由formin 和肌球蛋白 V 驱动的皮层肌动蛋白动力学。
J Cell Sci. 2011 May 1;124(Pt 9):1533-41. doi: 10.1242/jcs.079038. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验