Suppr超能文献

高效自动 3D 细胞核分割用于高通量筛选。

Efficient automatic 3D segmentation of cell nuclei for high-content screening.

机构信息

Faculty of Science and Technology, Institute of Biomedical Engineering, University of Silesia, Bedzinska St. 39, 41-200, Sosnowiec, Poland.

Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland.

出版信息

BMC Bioinformatics. 2022 May 31;23(1):203. doi: 10.1186/s12859-022-04737-4.

Abstract

BACKGROUND

High-content screening (HCS) is a pre-clinical approach for the assessment of drug efficacy. On modern platforms, it involves fluorescent image capture using three-dimensional (3D) scanning microscopy. Segmentation of cell nuclei in 3D images is an essential prerequisite to quantify captured fluorescence in cells for screening. However, this segmentation is challenging due to variabilities in cell confluency, drug-induced alterations in cell morphology, and gradual degradation of fluorescence with the depth of scanning. Despite advances in algorithms for segmenting nuclei for HCS, robust 3D methods that are insensitive to these conditions are still lacking.

RESULTS

We have developed an algorithm which first generates a 3D nuclear mask in the original images. Next, an iterative 3D marker-controlled watershed segmentation is applied to downsized images to segment adjacent nuclei under the mask. In the last step, borders of segmented nuclei are adjusted in the original images based on local nucleus and background intensities. The method was developed using a set of 10 3D images. Extensive tests on a separate set of 27 3D images containing 2,367 nuclei demonstrated that our method, in comparison with 6 reference methods, achieved the highest precision (PR = 0.97), recall (RE = 0.88) and F1-score (F1 = 0.93) of nuclei detection. The Jaccard index (JI = 0.83), which reflects the accuracy of nuclei delineation, was similar to that yielded by all reference approaches. Our method was on average more than twice as fast as the reference method that produced the best results. Additional tests carried out on three stacked 3D images comprising heterogenous nuclei yielded average PR = 0.96, RE = 0.84, F1 = 0.89, and JI = 0.80.

CONCLUSIONS

The high-performance metrics yielded by the proposed approach suggest that it can be used to reliably delineate nuclei in 3D images of monolayered and stacked cells exposed to cytotoxic drugs.

摘要

背景

高内涵筛选(HCS)是一种用于评估药物疗效的临床前方法。在现代平台上,它涉及使用三维(3D)扫描显微镜进行荧光图像捕获。对 3D 图像中的细胞核进行分割是对细胞中捕获的荧光进行定量以进行筛选的必要前提。然而,由于细胞汇合度的变化、药物诱导的细胞形态变化以及荧光随扫描深度的逐渐降解,这种分割具有挑战性。尽管用于 HCS 核分割的算法取得了进展,但仍然缺乏对这些条件不敏感的稳健 3D 方法。

结果

我们开发了一种算法,该算法首先在原始图像中生成 3D 核掩模。接下来,应用迭代的 3D 标记控制分水岭分割对缩小的图像进行分割,以在掩模下分割相邻的核。在最后一步中,根据局部核和背景强度在原始图像中调整分割核的边界。该方法是使用一组 10 个 3D 图像开发的。在包含 2367 个核的另外 27 个 3D 图像的独立数据集上进行了广泛的测试,结果表明,与 6 种参考方法相比,我们的方法实现了最高的核检测精度(PR=0.97)、召回率(RE=0.88)和 F1 分数(F1=0.93)。反映核描绘准确性的 Jaccard 指数(JI=0.83)与所有参考方法的结果相似。我们的方法的速度平均比产生最佳结果的参考方法快两倍以上。在包含异质核的三个堆叠 3D 图像上进行的其他测试得出的平均 PR=0.96、RE=0.84、F1=0.89 和 JI=0.80。

结论

所提出的方法产生的高性能指标表明,它可用于可靠地描绘暴露于细胞毒性药物的单层和堆叠细胞的 3D 图像中的核。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6068/9153210/a53b3572bbf0/12859_2022_4737_Fig1_HTML.jpg

相似文献

1
Efficient automatic 3D segmentation of cell nuclei for high-content screening.
BMC Bioinformatics. 2022 May 31;23(1):203. doi: 10.1186/s12859-022-04737-4.
3
Rapid 3-D delineation of cell nuclei for high-content screening platforms.
Comput Biol Med. 2016 Feb 1;69:328-38. doi: 10.1016/j.compbiomed.2015.04.025. Epub 2015 Apr 25.
4
3D cell nuclei segmentation based on gradient flow tracking.
BMC Cell Biol. 2007 Sep 4;8:40. doi: 10.1186/1471-2121-8-40.
6
A generic classification-based method for segmentation of nuclei in 3D images of early embryos.
BMC Bioinformatics. 2014 Jan 14;15:9. doi: 10.1186/1471-2105-15-9.
8
A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images.
BMC Bioinformatics. 2013 Nov 19;14:328. doi: 10.1186/1471-2105-14-328.
9
An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images.
J Microsc. 2011 Jul;243(1):60-76. doi: 10.1111/j.1365-2818.2010.03482.x. Epub 2011 Feb 2.

引用本文的文献

1
Universal consensus 3D segmentation of cells from 2D segmented stacks.
bioRxiv. 2025 Mar 20:2024.05.03.592249. doi: 10.1101/2024.05.03.592249.
2
3DCellComposer - A Versatile Pipeline Utilizing 2D Cell Segmentation Methods for 3D Cell Segmentation.
bioRxiv. 2024 Oct 27:2024.03.08.584082. doi: 10.1101/2024.03.08.584082.

本文引用的文献

3
Advances in imaging and analysis of 4 fluorescent components through the rat cortical column.
J Neurosci Methods. 2020 Jul 15;341:108792. doi: 10.1016/j.jneumeth.2020.108792. Epub 2020 May 22.
5
Review of high-content screening applications in toxicology.
Arch Toxicol. 2019 Dec;93(12):3387-3396. doi: 10.1007/s00204-019-02593-5. Epub 2019 Oct 29.
6
Three-Dimensional Segmentation and Reconstruction of Neuronal Nuclei in Confocal Microscopic Images.
Front Neuroanat. 2019 Aug 20;13:81. doi: 10.3389/fnana.2019.00081. eCollection 2019.
7
Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging.
BMC Bioinformatics. 2019 Sep 2;20(1):448. doi: 10.1186/s12859-019-3055-3.
8
High resolution microscopy reveals the nuclear shape of budding yeast during cell cycle and in various biological states.
J Cell Sci. 2016 Dec 15;129(24):4480-4495. doi: 10.1242/jcs.188250. Epub 2016 Nov 9.
9
Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.
PLoS Comput Biol. 2016 Jun 6;12(6):e1004970. doi: 10.1371/journal.pcbi.1004970. eCollection 2016 Jun.
10
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验