Suppr超能文献

从医学文献数据库(Medline)引用中提取药物基因组学的语义谓词。

Extracting semantic predications from Medline citations for pharmacogenomics.

作者信息

Ahlers Caroline B, Fiszman Marcelo, Demner-Fushman Dina, Lang François-Michel, Rindflesch Thomas C

机构信息

Lister Hill National Center for Biomedical Communications, National Library of Medicine Bethesda, Maryland 20894, USA.

出版信息

Pac Symp Biocomput. 2007:209-20.

Abstract

We describe a natural language processing system (Enhanced SemRep) to identify core assertions on pharmacogenomics in Medline citations. Extracted information is represented as semantic predications covering a range of relations relevant to this domain. The specific relations addressed by the system provide greater precision than that achievable with methods that rely on entity co-occurrence. The development of Enhanced SemRep is based on the adaptation of an existing system and crucially depends on domain knowledge in the Unified Medical Language System. We provide a preliminary evaluation (55% recall and 73% precision) and discuss the potential of this system in assisting both clinical practice and scientific investigation.

摘要

我们描述了一种自然语言处理系统(增强版SemRep),用于识别医学文献数据库(Medline)引用中关于药物基因组学的核心断言。提取的信息以语义谓词的形式呈现,涵盖了与该领域相关的一系列关系。该系统所处理的特定关系比依赖实体共现的方法具有更高的精度。增强版SemRep的开发基于对现有系统的改编,并且关键依赖于统一医学语言系统中的领域知识。我们提供了初步评估(召回率55%,精确率73%),并讨论了该系统在辅助临床实践和科学研究方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验