Suppr超能文献

基于电子健康记录的自然语言处理计算表型。

Natural Language Processing for EHR-Based Computational Phenotyping.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.

Abstract

This article reviews recent advances in applying natural language processing (NLP) to Electronic Health Records (EHRs) for computational phenotyping. NLP-based computational phenotyping has numerous applications including diagnosis categorization, novel phenotype discovery, clinical trial screening, pharmacogenomics, drug-drug interaction (DDI), and adverse drug event (ADE) detection, as well as genome-wide and phenome-wide association studies. Significant progress has been made in algorithm development and resource construction for computational phenotyping. Among the surveyed methods, well-designed keyword search and rule-based systems often achieve good performance. However, the construction of keyword and rule lists requires significant manual effort, which is difficult to scale. Supervised machine learning models have been favored because they are capable of acquiring both classification patterns and structures from data. Recently, deep learning and unsupervised learning have received growing attention, with the former favored for its performance and the latter for its ability to find novel phenotypes. Integrating heterogeneous data sources have become increasingly important and have shown promise in improving model performance. Often, better performance is achieved by combining multiple modalities of information. Despite these many advances, challenges and opportunities remain for NLP-based computational phenotyping, including better model interpretability and generalizability, and proper characterization of feature relations in clinical narratives.

摘要

本文综述了自然语言处理(NLP)在电子病历(EHRs)计算表型分析中的应用进展。基于 NLP 的计算表型分析有许多应用,包括诊断分类、新表型发现、临床试验筛选、药物基因组学、药物-药物相互作用(DDI)和药物不良事件(ADE)检测,以及全基因组和表型组关联研究。在计算表型分析的算法开发和资源构建方面取得了重大进展。在所调查的方法中,精心设计的关键词搜索和基于规则的系统通常能取得较好的性能。然而,关键词和规则列表的构建需要大量的人工投入,难以扩展。有监督的机器学习模型因其能够从数据中获取分类模式和结构而受到青睐。最近,深度学习和无监督学习受到越来越多的关注,前者因其性能而受到青睐,后者因其发现新表型的能力而受到青睐。整合异构数据源变得越来越重要,并显示出改善模型性能的潜力。通常,通过结合多种信息模态可以获得更好的性能。尽管取得了这些许多进展,但基于 NLP 的计算表型分析仍面临挑战和机遇,包括更好的模型可解释性和泛化能力,以及对临床叙述中特征关系的正确描述。

相似文献

1
Natural Language Processing for EHR-Based Computational Phenotyping.基于电子健康记录的自然语言处理计算表型。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.
5
Weakly Semi-supervised phenotyping using Electronic Health records.基于电子健康记录的弱监督表型研究
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验