Suppr超能文献

评估心肌楔形标本中的壁内虚拟电极:实验条件模拟

Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.

作者信息

Plank G, Prassl A, Hofer E, Trayanova N A

机构信息

Center for Physiological Medicine, Institute or Biophysics, Medical University Graz, Graz, Austria.

出版信息

Biophys J. 2008 Mar 1;94(5):1904-15. doi: 10.1529/biophysj.107.121343. Epub 2007 Nov 9.

Abstract

While defibrillation is the only means for prevention of sudden cardiac death, key aspects of the process, such as the intramural virtual electrodes (VEs), remain controversial. Experimental studies had attempted to assess intramural VEs by using wedge preparations and recording activity from the cut surface; however, applicability of this approach remains unclear. These studies found, surprisingly, that for strong shocks, the entire cut surface was negatively polarized, regardless of boundary conditions. The goal of this study is to examine, by means of bidomain simulations, whether VEs on the cut surface represent a good approximation to VEs in depth of the intact wall. Furthermore, we aim to explore mechanisms that could give rise to negative polarization on the cut surface. A model of wedge preparation was used, in which fiber orientation could be changed, and where the cut surface was subjected to permeable and impermeable boundary conditions. Small-scale mechanisms for polarization were also considered. To determine whether any distortions in the recorded VEs arise from averaging during optical mapping, a model of fluorescent recording was employed. The results indicate that, when an applied field is spatially uniform and impermeable boundary conditions are enforced, regardless of the fiber orientation VEs on the cut surface faithfully represent those intramurally, provided tissue properties are not altered by dissection. Results also demonstrate that VEs are sensitive to the conductive layer thickness above the cut surface. Finally, averaging during fluorescent recordings results in large negative VEs on the cut surface, but these do not arise from small-scale heterogeneities.

摘要

虽然除颤是预防心源性猝死的唯一手段,但该过程的关键方面,如壁内虚拟电极(VEs),仍存在争议。实验研究曾试图通过楔形标本并记录切割表面的活性来评估壁内VEs;然而,这种方法的适用性仍不明确。令人惊讶的是,这些研究发现,对于强电击,无论边界条件如何,整个切割表面均呈负极化。本研究的目的是通过双域模拟来检验切割表面的VEs是否能很好地近似完整壁深度处的VEs。此外,我们旨在探索可能导致切割表面负极化的机制。使用了一种楔形标本模型,其中纤维方向可以改变,且切割表面受到可渗透和不可渗透边界条件的影响。还考虑了极化的小尺度机制。为了确定记录的VEs中的任何失真是否源于光学映射过程中的平均化,采用了荧光记录模型。结果表明,当施加的场在空间上均匀且施加不可渗透边界条件时,无论纤维方向如何,只要组织特性不因解剖而改变,切割表面的VEs就能忠实地代表壁内的VEs。结果还表明,VEs对切割表面上方的导电层厚度敏感。最后,荧光记录过程中的平均化会导致切割表面出现大的负性VEs,但这些并非由小尺度异质性引起。

相似文献

1
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.
Biophys J. 2008 Mar 1;94(5):1904-15. doi: 10.1529/biophysj.107.121343. Epub 2007 Nov 9.
2
Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence.
J Cardiovasc Electrophysiol. 2006 Mar;17(3):305-11. doi: 10.1111/j.1540-8167.2006.00360.x.
3
Near-threshold field stimulation: intramural versus surface activation.
Cardiovasc Res. 2006 Jan;69(1):98-106. doi: 10.1016/j.cardiores.2005.08.012. Epub 2005 Oct 13.
4
Virtual electrode polarization in the far field: implications for external defibrillation.
Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H1055-70. doi: 10.1152/ajpheart.2000.279.3.H1055.
5
High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
Cardiovasc Res. 2004 Dec 1;64(3):448-56. doi: 10.1016/j.cardiores.2004.07.016.
7
Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
J Cardiovasc Electrophysiol. 2000 Dec;11(12):1386-96. doi: 10.1046/j.1540-8167.2000.01386.x.
8
Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1556-9. doi: 10.1109/IEMBS.2006.259243.
10
Modeling the role of the coronary vasculature during external field stimulation.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2335-45. doi: 10.1109/TBME.2010.2051227. Epub 2010 Jun 10.

引用本文的文献

1
Electrical Stimulation for Low-Energy Termination of Cardiac Arrhythmias: a Review.
Cardiovasc Drugs Ther. 2023 Apr;37(2):323-340. doi: 10.1007/s10557-021-07236-5. Epub 2021 Aug 7.
2
Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia.
Prog Biophys Mol Biol. 2016 Jul;121(2):185-94. doi: 10.1016/j.pbiomolbio.2016.06.004. Epub 2016 Jun 19.
3
Cardiac response to low-energy field pacing challenges the standard theory of defibrillation.
Circ Arrhythm Electrophysiol. 2015 Jun;8(3):685-93. doi: 10.1161/CIRCEP.114.002661. Epub 2015 Mar 15.
4
5
New insights into defibrillation of the heart from realistic simulation studies.
Europace. 2014 May;16(5):705-13. doi: 10.1093/europace/eut330.
6
An efficient finite element approach for modeling fibrotic clefts in the heart.
IEEE Trans Biomed Eng. 2014 Mar;61(3):900-10. doi: 10.1109/TBME.2013.2292320.
7
On boundary stimulation and optimal boundary control of the bidomain equations.
Math Biosci. 2013 Oct;245(2):206-15. doi: 10.1016/j.mbs.2013.07.004. Epub 2013 Jul 12.
8
Computational modeling of the human atrial anatomy and electrophysiology.
Med Biol Eng Comput. 2012 Aug;50(8):773-99. doi: 10.1007/s11517-012-0924-6. Epub 2012 Jun 21.
9
Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: application to complex ventricular models.
IEEE Trans Biomed Eng. 2011 Apr;58(4):1066-75. doi: 10.1109/TBME.2010.2096425. Epub 2011 Jan 31.
10
Probing field-induced tissue polarization using transillumination fluorescent imaging.
Biophys J. 2010 Oct 6;99(7):2058-66. doi: 10.1016/j.bpj.2010.07.057.

本文引用的文献

1
The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.
Biophys J. 2007 Nov 15;93(10):3714-26. doi: 10.1529/biophysj.107.110981.
2
Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure.
Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H1223-30. doi: 10.1152/ajpheart.00079.2007. Epub 2007 Apr 13.
3
Algebraic multigrid preconditioner for the cardiac bidomain model.
IEEE Trans Biomed Eng. 2007 Apr;54(4):585-96. doi: 10.1109/TBME.2006.889181.
6
The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
IEEE Trans Biomed Eng. 2006 Jun;53(6):1187-90. doi: 10.1109/TBME.2006.873386.
7
Defibrillation of the heart: insights into mechanisms from modelling studies.
Exp Physiol. 2006 Mar;91(2):323-37. doi: 10.1113/expphysiol.2005.030973. Epub 2006 Feb 9.
8
Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.
Biophys J. 2006 Apr 15;90(8):2938-45. doi: 10.1529/biophysj.105.076505. Epub 2006 Jan 27.
10
Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
Circ Res. 2005 Jul 22;97(2):168-75. doi: 10.1161/01.RES.0000174429.00987.17. Epub 2005 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验