ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Neuroimage. 2019 Jan 1;184:964-980. doi: 10.1016/j.neuroimage.2018.09.076. Epub 2018 Sep 30.
Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These models generally make assumptions about the tissue and the diffusion processes which often depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte Carlo simulations of the random walk of water molecules are widely recognized to provide near groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of simpler models rather than used for the estimation of microstructural properties. This work proposes a general framework which leverages Monte Carlo simulations for the estimation of physically interpretable microstructural parameters, both in single and in crossing fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed for a large collection of microstructural configurations. At every voxel, the microstructural parameters are estimated by optimizing a sparse combination of these fingerprints. Extensive synthetic experiments showed that our approach achieves accurate and robust estimates in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of spinal cord injury, our approach provided microstructural parameters that showed better correspondence with histology than five closed-form models of the diffusion signal: MMWMD, NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius and axonal density indices in keeping with ex vivo studies. This work paves the way for microstructure fingerprinting with Monte Carlo simulations used directly at the modeling stage and not only as a validation tool.
许多封闭式解析模型已经被提出,用以将磁共振扩散加权成像(DW-MRI)信号与白质组织的微观结构特征联系起来。这些模型通常对组织和扩散过程做出假设,这些假设往往与生物物理现实不符,从而限制了它们在实际应用中的可靠性和可解释性。水分子随机漫步的蒙特卡罗模拟被广泛认为是 DW-MRI 信号的接近真实值的来源。然而,它们大多仅限于更简单模型的验证,而不是用于估计微观结构特性。本研究提出了一个通用框架,该框架利用蒙特卡罗模拟来估计物理上可解释的微观结构参数,包括单束和交叉束的轴突。针对大量微观结构配置,预先计算 DW-MRI 信号(或指纹)的蒙特卡罗模拟。在每个体素处,通过优化这些指纹的稀疏组合来估计微观结构参数。广泛的合成实验表明,在存在噪声和固定或输入参数不确定性的情况下,我们的方法可以实现准确和稳健的估计。在脊髓损伤的大鼠模型中,我们的方法提供的微观结构参数与组织学的相关性优于五种扩散信号的封闭式模型:MMWMD、NODDI、DIAMOND、WMTI 和 MAPL。在人类连接组计划(HCP)的全脑活体数据中,我们的方法显示出与体外研究一致的表观轴突半径和轴突密度指数的空间分布。这项工作为使用蒙特卡罗模拟进行微观结构指纹识别铺平了道路,这种方法直接在建模阶段使用,而不仅仅是作为验证工具。