Suppr超能文献

通过环磷酸腺苷(cAMP)和cAMP依赖性蛋白激酶的信号传导:药物设计的多种策略

Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.

作者信息

Taylor Susan S, Kim Choel, Cheng Cecilia Y, Brown Simon H J, Wu Jian, Kannan Natarajan

机构信息

Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093-0654, USA.

出版信息

Biochim Biophys Acta. 2008 Jan;1784(1):16-26. doi: 10.1016/j.bbapap.2007.10.002. Epub 2007 Oct 12.

Abstract

The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits as well as activation by cAMP. These structures reveal for the first time the remarkable malleability of the regulatory subunits and the CNB domains. At the same time, they allow us to appreciate that the catalytic subunit is not only a catalyst but also a scaffold that mediates a wide variety of protein:protein interactions. The holoenzyme structures also provide a new paradigm for designing isoform-specific activators and inhibitors of PKA. In addition to binding to the catalytic subunits, the regulatory subunits also use their N-terminal dimerization/docking domain to bind with high affinity to A Kinase Anchoring Proteins using an amphipathic helical motif. This targeting mechanism, which localizes PKA near to its protein substrates, is also a target for therapeutic intervention of PKA signaling.

摘要

多年来,环磷酸腺苷(cAMP)依赖性蛋白激酶的催化亚基一直是蛋白激酶超家族的原型,而与cAMP结合的调节亚基的结构则定义了保守的环核苷酸结合(CNB)基序。然而,只有全酶的结构才能让我们了解调节亚基的抑制作用以及cAMP的激活作用的分子特征。这些结构首次揭示了调节亚基和CNB结构域具有显著的可塑性。同时,它们让我们认识到催化亚基不仅是一种催化剂,还是一种介导多种蛋白质:蛋白质相互作用的支架。全酶结构还为设计PKA的亚型特异性激活剂和抑制剂提供了新的范例。除了与催化亚基结合外,调节亚基还利用其N端二聚化/对接结构域,通过两亲性螺旋基序与A激酶锚定蛋白高亲和力结合。这种将PKA定位在其蛋白质底物附近的靶向机制,也是PKA信号传导治疗干预的靶点。

相似文献

1
Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.
Biochim Biophys Acta. 2008 Jan;1784(1):16-26. doi: 10.1016/j.bbapap.2007.10.002. Epub 2007 Oct 12.
4
Differential effects of substrate on type I and type II PKA holoenzyme dissociation.
Biochemistry. 2004 May 18;43(19):5629-36. doi: 10.1021/bi0499157.
5
Multiplicity of Regulatory Subunit Conformations Defines Structural Ensemble of Reset Protein Kinase A Holoenzyme.
J Am Chem Soc. 2025 Apr 30;147(17):14174-14190. doi: 10.1021/jacs.4c16269. Epub 2025 Apr 16.
6
C subunits binding to the protein kinase A RI alpha dimer induce a large conformational change.
J Biol Chem. 2004 Apr 30;279(18):19084-90. doi: 10.1074/jbc.M313405200. Epub 2004 Feb 25.
7
Signaling the signal, cyclic AMP-dependent protein kinase inhibition by insulin-formed H2O2 and reactivation by thioredoxin.
J Biol Chem. 2008 May 2;283(18):12373-86. doi: 10.1074/jbc.M706832200. Epub 2008 Mar 6.
9
Adenylate control in cAMP signaling: implications for adaptation in signalosomes.
Biochem J. 2020 Aug 28;477(16):2981-2998. doi: 10.1042/BCJ20200435.

引用本文的文献

2
Red blood cell signaling is functionally conserved in invasion.
iScience. 2024 Sep 26;27(10):111052. doi: 10.1016/j.isci.2024.111052. eCollection 2024 Oct 18.
4
PKIB, a Novel Target for Cancer Therapy.
Int J Mol Sci. 2024 Apr 25;25(9):4664. doi: 10.3390/ijms25094664.
5
Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions.
Cell Mol Life Sci. 2024 Apr 3;81(1):162. doi: 10.1007/s00018-024-05204-4.
7
Compartmentalised cAMP signalling in the primary cilium.
Front Physiol. 2023 May 9;14:1187134. doi: 10.3389/fphys.2023.1187134. eCollection 2023.
8
Effect of on Follicle Development of Djungarian Hamster () with the Variation of Ambient Temperatures.
Biology (Basel). 2023 Feb 15;12(2):315. doi: 10.3390/biology12020315.
9
Growth patterns and outcomes of growth hormone therapy in patients with acrodysostosis.
J Endocrinol Invest. 2023 Aug;46(8):1673-1684. doi: 10.1007/s40618-023-02026-2. Epub 2023 Feb 7.

本文引用的文献

1
PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity.
Science. 2007 Oct 12;318(5848):274-9. doi: 10.1126/science.1146447.
2
PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation.
Cell. 2007 Sep 21;130(6):1032-43. doi: 10.1016/j.cell.2007.07.018.
3
Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and catalytic subunit binding kinetics.
Biochemistry. 2007 Aug 14;46(32):9283-91. doi: 10.1021/bi700421h. Epub 2007 Jul 21.
5
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1272-7. doi: 10.1073/pnas.0610251104. Epub 2007 Jan 16.
6
cAMP activation of PKA defines an ancient signaling mechanism.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):93-8. doi: 10.1073/pnas.0609033103. Epub 2006 Dec 20.
7
A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase.
Mol Cell. 2006 Nov 3;24(3):397-408. doi: 10.1016/j.molcel.2006.09.015.
8
Molecular basis of AKAP specificity for PKA regulatory subunits.
Mol Cell. 2006 Nov 3;24(3):383-95. doi: 10.1016/j.molcel.2006.09.006.
9
A model for agonism and antagonism in an ancient and ubiquitous cAMP-binding domain.
J Biol Chem. 2007 Jan 5;282(1):581-93. doi: 10.1074/jbc.M607706200. Epub 2006 Oct 30.
10
Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins.
Circ Res. 2006 Apr 28;98(8):993-1001. doi: 10.1161/01.RES.0000218273.91741.30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验