Suppr超能文献

从数学生理学中的反问题到定量鉴别诊断。

From inverse problems in mathematical physiology to quantitative differential diagnoses.

作者信息

Zenker Sven, Rubin Jonathan, Clermont Gilles

机构信息

Center for Inflammation and Regenerative Modeling, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2007 Nov;3(11):e204. doi: 10.1371/journal.pcbi.0030204. Epub 2007 Sep 6.

Abstract

The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses. We outline possible steps toward translating this computational approach to the bedside, to supplement today's evidence-based medicine with a quantitatively founded model-based medicine that integrates mechanistic knowledge with patient-specific information.

摘要

在临床环境中获取定量数据的能力有所提高,但总体上未能改善急性病患者的治疗结果,这表明需要在计算机支持的数据解释和决策方面取得进展。特别是,应用通过实验阐明的生理机制的数学模型可以增强对定量的、针对患者的信息的解释,并有助于更好地确定治疗靶点。然而,这类模型通常复杂且非线性,这一现实往往使得难以确定最能代表现有数据的模型的唯一参数和状态。假设这种非唯一性可以传达有用信息,我们使用心血管系统数学模型、随机测量模型和贝叶斯推理技术的组合,对常见的鉴别诊断过程(急性护理环境中的低血压)进行了简化模拟,以量化参数和状态的不确定性。此过程的输出是基于先前的总体信息以及针对特定患者的临床观察结果,在特定患者的模型参数和初始条件空间上的概率密度函数。我们表明,即使使用单峰且无信息的先验,多峰后验概率密度函数也会自然出现。这些密度的峰值对应于临床相关的鉴别诊断,并且在简化的模拟设置中,可以通过吸收来自动态干预(例如液体冲击)的额外观察结果,将其限制为单一诊断。我们得出结论,定量生理学中反问题的不适定性不仅是一个技术障碍,而且反映了临床现实,并且在求解过程中得到充分解决时,它在数学描述的生理知识与鉴别诊断的临床概念之间提供了一种新颖的联系。我们概述了将这种计算方法应用于床边的可能步骤,以便用一种基于定量模型的医学来补充当今的循证医学,这种医学将机制知识与患者特定信息相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/2098838/3b087a980ecc/pcbi.0030204.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验