Suppr超能文献

从监测数据中在线识别生理机制数学模型的并行粒子滤波器:仿真场景中的性能和实时可扩展性。

Parallel particle filters for online identification of mechanistic mathematical models of physiology from monitoring data: performance and real-time scalability in simulation scenarios.

机构信息

Department of Anaesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.

出版信息

J Clin Monit Comput. 2010 Aug;24(4):319-33. doi: 10.1007/s10877-010-9252-2. Epub 2010 Jul 31.

Abstract

OBJECTIVE

Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested.

METHODS

A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario.

RESULTS

SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories.

CONCLUSIONS

Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.

摘要

目的

将生理学的机制数学模型与使用概率推断的定量观察相结合,可能优于急性护理医学中计算机化决策支持的既定方法。粒子滤波器 (PF) 可以随着数据的可用而连续执行这种推断。使用并行计算机和最小先验知识测试实现联合状态和参数估计 (JSPE) 的能力,探索 PF 用于心血管生理学模型的实时状态估计 (SE) 的潜力。

方法

实现了一种并行化的顺序重要性采样/重采样算法,并在使用多达 1024 个核的 Cray XT3 上评估了该算法对非线性五维 ODE 心血管系统模型的纯 SE 问题的可扩展性。使用状态扩充方法和参数的人工随机进化实现了 JSPE。在模拟出血/复苏场景中,当仅观察动脉压、中心静脉压、心率和可选的心输出量时,同时估计 5 个状态和 18 个未知参数时,评估了其性能。

结果

SE 是成功的,并通过适当的算法参数化扩展到 1024 个核,具有高达 1000 万个粒子的实时等效性能。在描述的欠定情况下,JSPE 实现了对可观察量的出色再现,并对舒张末期心室容积和交感神经活动进行了定性跟踪。然而,只有部分参数的后验分布集中在估计轨迹的真实值附近。

结论

并行 PF 的性能使其在为临床数据解释、预测和治疗优化目的而应用于复杂的生理学数学模型方面具有广阔的前景。然而,在描述的极度欠定情况下,JSPE 从该模拟设置中的数据中提取了具有潜在临床相关性的信息。但是,当可用的参数值先验知识很少时,要完全解决此问题,还需要进一步改进方法,对此进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验