Eames Matt, Kortemme Tanja
Graduate Group in Biophysics, University of California, San Francisco, San Francisco, CA 94158-2330, USA.
Structure. 2007 Nov;15(11):1442-51. doi: 10.1016/j.str.2007.09.010.
Genome-wide studies in Saccharomyces cerevisiae concluded that the dominant determinant of protein evolutionary rates is expression level: highly expressed proteins generally evolve most slowly. To determine how this constraint affects the evolution of protein interactions, we directly measure evolutionary rates of protein interface, surface, and core residues by structurally mapping domain interactions to yeast genomes. We find that mRNA level and protein abundance, though correlated, report on pressures affecting regions of proteins differently. Pressures proportional to mRNA level slow evolutionary rates of all structural regions and reduce the variability in rate differences between interfaces and other surfaces. In contrast, the evolutionary rate variation within a domain is much less correlated to protein abundance. Distinct pressures may be associated primarily with the cost (mRNA level) and functional (protein abundance) benefit of protein production. Interfaces of proteins with low mRNA levels may have higher evolutionary flexibility and could constitute the raw material for new functions.
对酿酒酵母的全基因组研究得出结论,蛋白质进化速率的主要决定因素是表达水平:高表达的蛋白质通常进化得最慢。为了确定这种限制如何影响蛋白质相互作用的进化,我们通过将结构域相互作用映射到酵母基因组来直接测量蛋白质界面、表面和核心残基的进化速率。我们发现,mRNA水平和蛋白质丰度虽然相关,但对影响蛋白质不同区域的压力的反映有所不同。与mRNA水平成比例的压力会减缓所有结构区域的进化速率,并减少界面与其他表面之间速率差异的变异性。相比之下,结构域内的进化速率变化与蛋白质丰度的相关性要小得多。不同的压力可能主要与蛋白质产生的成本(mRNA水平)和功能(蛋白质丰度)益处相关。mRNA水平低的蛋白质的界面可能具有更高的进化灵活性,并可能构成新功能的原材料。