Seeliger Daniel, Haas Jürgen, de Groot Bert L
Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Structure. 2007 Nov;15(11):1482-92. doi: 10.1016/j.str.2007.09.017.
The fast and accurate prediction of protein flexibility is one of the major challenges in protein science. Enzyme activity, signal transduction, and ligand binding are dynamic processes involving essential conformational changes ranging from small side chain fluctuations to reorientations of entire domains. In the present work, we describe a reimplementation of the CONCOORD approach, termed tCONCOORD, which allows a computationally efficient sampling of conformational transitions of a protein based on geometrical considerations. Moreover, it allows for the extraction of the essential degrees of freedom, which, in general, are the biologically relevant ones. The method rests on a reliable estimate of the stability of interactions observed in a starting structure, in particular those interactions that change during a conformational transition. Applications to adenylate kinase, calmodulin, aldose reductase, T4-lysozyme, staphylococcal nuclease, and ubiquitin show that experimentally known conformational transitions are faithfully predicted.
蛋白质灵活性的快速准确预测是蛋白质科学中的主要挑战之一。酶活性、信号转导和配体结合都是动态过程,涉及从侧链小波动到整个结构域重新定向的基本构象变化。在本工作中,我们描述了CONCOORD方法的一种重新实现,称为tCONCOORD,它基于几何考虑允许对蛋白质的构象转变进行计算高效的采样。此外,它还允许提取基本自由度,一般来说,这些自由度是生物学相关的。该方法基于对起始结构中观察到的相互作用稳定性的可靠估计,特别是那些在构象转变过程中发生变化的相互作用。对腺苷酸激酶、钙调蛋白、醛糖还原酶、T4溶菌酶、葡萄球菌核酸酶和泛素的应用表明,实验已知的构象转变得到了准确预测。