Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Biomolecules. 2020 May 29;10(6):833. doi: 10.3390/biom10060833.
The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.
旋转细菌鞭毛马达在生物化学中因其在旋转方向切换时的高度同步运作和放大而引人注目。该马达是鞭毛基体的一部分,是一个复杂的多蛋白组装体。感应和能量转导依赖于一组核心蛋白,这些蛋白在不同物种中适应不同的功能,以调整扭矩并产生多种开关。马达对趋化性和环境刺激的反应是由核心蛋白与小信号蛋白相互作用驱动的。初始蛋白相互作用通过一个多亚基细胞质环传播,以切换扭矩。扭矩反转引发鞭毛丝的结构转变,从而改变运动行为。核心组件的细微变化会反转或阻止开关操作。鞭毛开关的力学性质已经通过多种方法进行了研究,从蛋白质动力学到单分子和细胞生物物理学。在电子冷冻显微镜技术的最新进展的推动下,已经可以获得几种物种的结构。计算方法将结构与遗传和生化数据库相关联。开关超敏感性及其对马达扭矩的依赖性的基础设计原则仍然难以捉摸,但已经出现了一些诱人的线索。本综述旨在将最近的知识整合到一个统一的平台上,为新的研究策略提供灵感。