Suppr超能文献

盐对β-葡萄糖苷酶的影响:pH曲线变窄。

Salt effects on beta-glucosidase: pH-profile narrowing.

作者信息

Bowers Erin M, Ragland Lindsey O, Byers Larry D

机构信息

Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.

出版信息

Biochim Biophys Acta. 2007 Dec;1774(12):1500-7. doi: 10.1016/j.bbapap.2007.10.007. Epub 2007 Oct 24.

Abstract

Salts inhibit the activity of sweet almond beta-glucosidase. For cations (Cl(-) salts) the effectiveness follows the series: Cu(+2), Fe(+2)>Zn(+2)>Li(+)>Ca(+2)>Mg(+2)>Cs(+)>NH(4)(+)>Rb(+)>K(+)>Na(+) and for anions (Na(+) salts) the series is: I(-)>ClO(4)(-)>(-)SCN>Br(-) approximately NO(3)(-)>Cl(-) approximately (-)OAc>F(-) approximately SO(4)(-2). The activity of the enzyme, like that of most glycohydrolases, depends on a deprotonated carboxylate (nucleophile) and a protonated carboxylic acid for optimal activity. The resulting pH-profile of k(cat)/K(m) for the beta-glucosidase-catalyzed hydrolysis of p-nitrophenyl glucoside is characterized by a width at half height that is strongly sensitive to the nature and concentration of the salt. Most of the inhibition is due to a shift in the enzymic pK(a)s and not to an effect on the pH-independent second-order rate constant, (k(cat)/K(m))(lim). For example, as the NaCl concentration is increased from 0.01 M to 1.0 M the apparent pK(a1)increases (from 3.7 to 4.9) and the apparent pK(a2)decreases (from 7.2 to 5.9). With p-nitrophenyl glucoside, the value of the pH-independent (k(cat)/K(m))(lim) (=9 x 10(4) M(-1) s(-1)) is reduced by less than 4% as the NaCl concentration is increased. There is a similar shift in the pK(a)s when the LiCl concentration is increased to 1.0 M. The results of these salt-induced pK(a) shifts rule out a significant contribution of reverse protonation to the catalytic efficiency of the enzyme. At low salt concentration, the fraction of the catalytically active monoprotonated enzyme in the reverse protonated form (i.e., proton on the group with a pK(a) of 3.7 and dissociated from the group with a pK(a) of 7.2) is very small ( approximately 0.03%). At higher salt concentrations, where the two pK(a)s become closer, the fraction of the monoprotonated enzyme in the reverse protonated form increases over 300-fold. However, there is no increase in the intrinsic reactivity, (k(cat)/K(m))(lim), of the monoprotonated species. For other enzymes which may show such salt-induced pK(a) shifts, this provides a convenient test for the role of reverse protonation.

摘要

盐会抑制甜杏仁β-葡萄糖苷酶的活性。对于阳离子(氯化物盐),其抑制效果顺序为:Cu(+2)、Fe(+2)>Zn(+2)>Li(+)>Ca(+2)>Mg(+2)>Cs(+)>NH(4)(+)>Rb(+)>K(+)>Na(+);对于阴离子(钠盐),顺序为:I(-)>ClO(4)(-)>(-)SCN>Br(-)≈NO(3)(-)>Cl(-)≈(-)OAc>F(-)≈SO(4)(-2)。与大多数糖水解酶一样,该酶的活性依赖于一个去质子化的羧酸盐(亲核试剂)和一个质子化的羧酸以实现最佳活性。β-葡萄糖苷酶催化对硝基苯基葡萄糖苷水解反应的k(cat)/K(m)的pH曲线特征在于其半高宽对盐的性质和浓度非常敏感。大部分抑制作用是由于酶的pK(a)值发生了变化,而不是对与pH无关的二级速率常数(k(cat)/K(m))(lim)产生影响。例如,随着氯化钠浓度从0.01 M增加到1.0 M,表观pK(a1)增大(从3.7增至4.9),表观pK(a2)减小(从7.2降至5.9)。对于对硝基苯基葡萄糖苷,随着氯化钠浓度增加,与pH无关的(k(cat)/K(m))(lim)值(=9×10(4) M(-1) s(-1))降低不到4%。当氯化锂浓度增加到1.0 M时,pK(a)值也有类似的变化。这些盐诱导的pK(a)变化结果排除了反向质子化对酶催化效率有显著贡献的可能性。在低盐浓度下,以反向质子化形式存在的具有催化活性的单质子化酶的比例(即质子在pK(a)为3.7的基团上且从pK(a)为7.2的基团上解离)非常小(约0.03%)。在较高盐浓度下,两个pK(a)值变得更接近,以反向质子化形式存在的单质子化酶的比例增加了300多倍。然而,单质子化物种的固有反应性(k(cat)/K(m))(lim)并没有增加。对于其他可能显示出这种盐诱导的pK(a)变化的酶,这为检验反向质子化的作用提供了一种简便的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验