Chitayat Seth, Gregg Katie, Adams Jarrett J, Ficko-Blean Elizabeth, Bayer Edward A, Boraston Alisdair B, Smith Steven P
Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
J Mol Biol. 2008 Jan 4;375(1):20-8. doi: 10.1016/j.jmb.2007.10.031. Epub 2007 Oct 17.
The genomes of myonecrotic strains of Clostridium perfringens encode a large number of secreted glycoside hydrolases. The activities of these enzymes are consistent with degradation of the mucosal layer of the human gastrointestinal tract, glycosaminoglycans and other cellular glycans found throughout the body. In many cases this is thought to aid in the propagation of the major toxins produced by C. perfringens. One such example is the family 84 glycoside hydrolases, which contains five C. perfringens members (CpGH84A-E), each displaying a unique modular architecture. The smallest and most extensively studied member, CpGH84C, comprises an N-terminal catalytic domain with beta-N-acetylglucosaminidase activity, a family 32 carbohydrate-binding module, a family 82 X-module (X82) of unknown function, and a fibronectin type-III-like module. Here we present the structure of the X82 module from CpGH84C, determined by both NMR spectroscopy and X-ray crystallography. CpGH84C X82 adopts a jell-roll fold comprising two beta-sheets formed by nine beta-strands. CpGH84C X82 displays distant amino acid sequence identity yet close structural similarity to the cohesin modules of cellulolytic anaerobic bacteria. Cohesin modules are responsible for the assembly of numerous hydrolytic enzymes in a cellulose-degrading multi-enzyme complex, termed the cellulosome, through a high-affinity interaction with the calcium-binding dockerin module. A planar surface is located on the face of the CpGH84 X82 structure that corresponds to the dockerin-binding region of cellulolytic cohesin modules and has the approximate dimensions to accommodate a dockerin module. The presence of cohesin-like X82 modules in glycoside hydrolases of C. perfringens is an indication that the formation of novel X82-dockerin mediated multi-enzyme complexes, with potential roles in pathogenesis, is possible.
产气荚膜梭菌的肌坏死菌株基因组编码大量分泌型糖苷水解酶。这些酶的活性与人体胃肠道黏膜层、糖胺聚糖和全身其他细胞聚糖的降解相一致。在许多情况下,这被认为有助于产气荚膜梭菌产生的主要毒素的传播。一个这样的例子是84家族糖苷水解酶,它包含五个产气荚膜梭菌成员(CpGH84A - E),每个成员都展示出独特的模块化结构。最小且研究最广泛的成员CpGH84C,包含一个具有β - N - 乙酰氨基葡萄糖苷酶活性的N端催化结构域、一个32家族碳水化合物结合模块、一个功能未知的82家族X模块(X82)和一个纤连蛋白III型样模块。在此,我们展示了通过核磁共振光谱和X射线晶体学确定的CpGH84C的X82模块的结构。CpGH84C X82采用果冻卷折叠结构,由九条β链形成两个β折叠片。CpGH84C X82与纤维素分解厌氧细菌的黏连蛋白模块显示出远缘氨基酸序列同一性但结构相似性接近。黏连蛋白模块通过与钙结合的dockerin模块的高亲和力相互作用,负责在纤维素降解多酶复合物(称为纤维小体)中组装众多水解酶。在CpGH84 X82结构的表面上有一个平面,该平面与纤维素分解黏连蛋白模块的dockerin结合区域相对应,并且具有大致尺寸以容纳一个dockerin模块。产气荚膜梭菌糖苷水解酶中存在黏连蛋白样X82模块表明,形成具有潜在致病作用的新型X82 - dockerin介导的多酶复合物是可能的。