Suppr超能文献

用于检测六类心音图记录的迁移学习模型。

Transfer Learning Models for Detecting Six Categories of Phonocardiogram Recordings.

作者信息

Wang Miao, Guo Binbin, Hu Yating, Zhao Zehang, Liu Chengyu, Tang Hong

机构信息

School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.

School of Instrument Science and Engineering, Southeast University, Nanjing 214135, China.

出版信息

J Cardiovasc Dev Dis. 2022 Mar 16;9(3):86. doi: 10.3390/jcdd9030086.

Abstract

BACKGROUND AND AIMS

Auscultation is a cheap and fundamental technique for detecting cardiovascular disease effectively. Doctors' abilities in auscultation are varied. Sometimes, there may be cases of misdiagnosis, even when auscultation is performed by an experienced doctor. Hence, it is necessary to propose accurate computational tools to assist auscultation, especially in developing countries. Artificial intelligence technology can be an efficient diagnostic tool for detecting cardiovascular disease. This work proposed an automatic multiple classification method for cardiovascular disease detection by heart sound signals.

METHODS AND RESULTS

In this work, a 1D heart sound signal is translated into its corresponding 3D spectrogram using continuous wavelet transform (CWT). In total, six classes of heart sound data are used in this experiment. We combine an open database (including five classes of heart sound data: aortic stenosis, mitral regurgitation, mitral stenosis, mitral valve prolapse and normal) with one class (pulmonary hypertension) of heart sound data collected by ourselves to perform the experiment. To make the method robust in a noisy environment, the background deformation technique is used before training. Then, 10 transfer learning networks (GoogleNet, SqueezeNet, DarkNet19, MobileNetv2, Inception-ResNetv2, DenseNet201, Inceptionv3, ResNet101, NasNet-Large, and Xception) are used for comparison. Furthermore, other models (LSTM and CNN) are also compared with our proposed algorithm. The experimental results show that four transfer learning networks (ResNet101, DenseNet201, DarkNet19 and GoogleNet) outperformed their peer models with an accuracy of 0.98 to detect the multiple heart diseases. The performances have been validated both in the original heart sound and the augmented heart sound using 10-fold cross validation. The results of these 10 folds are reported in this research.

CONCLUSIONS

Our method obtained high classification accuracy even under a noisy background, which suggests that the proposed classification method could be used in auxiliary diagnosis for cardiovascular diseases.

摘要

背景与目的

听诊是一种有效检测心血管疾病的廉价且基础的技术。医生的听诊能力各不相同。有时,即便由经验丰富的医生进行听诊,也可能出现误诊情况。因此,有必要提出精确的计算工具来辅助听诊,尤其是在发展中国家。人工智能技术可以成为检测心血管疾病的高效诊断工具。这项工作提出了一种通过心音信号检测心血管疾病的自动多分类方法。

方法与结果

在这项工作中,使用连续小波变换(CWT)将一维心音信号转换为其相应的三维频谱图。本实验总共使用了六类心音数据。我们将一个开放数据库(包括五类心音数据:主动脉瓣狭窄、二尖瓣反流、二尖瓣狭窄、二尖瓣脱垂和正常)与我们自己收集的一类(肺动脉高压)心音数据相结合来进行实验。为使该方法在噪声环境中具有鲁棒性,在训练前使用了背景变形技术。然后,使用10个迁移学习网络(GoogleNet、SqueezeNet、DarkNet19、MobileNetv2、Inception - ResNetv2、DenseNet201、Inceptionv3、ResNet101、NasNet - Large和Xception)进行比较。此外,还将其他模型(LSTM和CNN)与我们提出的算法进行了比较。实验结果表明,四个迁移学习网络(ResNet101、DenseNet201、DarkNet19和GoogleNet)在检测多种心脏病方面的准确率达到0.98,优于同类模型。使用10折交叉验证在原始心音和增强心音中均验证了这些性能。本研究报告了这10折的结果。

结论

我们的方法即使在噪声背景下也能获得较高的分类准确率,这表明所提出的分类方法可用于心血管疾病的辅助诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7bc/8951694/1e11a843ec3c/jcdd-09-00086-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验