Suppr超能文献

持续活动监测与智能情境提示以提高药物依从性。

Continuous activity monitoring and intelligent contextual prompting to improve medication adherence.

作者信息

Lundell Jay, Hayes Tamara L, Vurgun Sengul, Ozertem Umut, Kimel Janna, Kaye Jeffrey, Guilak Farzin, Pavel Misha

机构信息

Digital Health Group at Intel Corporation, 20270 NW, Amberglen Ct, AG1-102, Beaverton, OR 97229, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6287-90. doi: 10.1109/IEMBS.2007.4353792.

Abstract

Poor medication adherence is a serious medical problem, particularly in older adults. Various solutions have been developed to remind people to take their medications, but these systems are usually simple time-based alarm systems that are not particularly effective. We describe a system that is context aware, and that utilizes information about past patterns of behavior plus the current context to provide prompts at the appropriate time and place. A case study from our initial deployment of the system to eleven older adults illustrates the possibilities and advantages of context aware prompting systems.

摘要

用药依从性差是一个严重的医学问题,尤其是在老年人中。已经开发出各种解决方案来提醒人们服药,但这些系统通常是简单的基于时间的警报系统,效果并不特别显著。我们描述了一种具有情境感知能力的系统,该系统利用过去的行为模式信息以及当前情境,在适当的时间和地点提供提示。我们将该系统初步部署到11位老年人身上的案例研究,说明了情境感知提示系统的可能性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验