Kovac J R, Voldman J
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 36-824, Cambridge, Massachusetts 02139, USA.
Anal Chem. 2007 Dec 15;79(24):9321-30. doi: 10.1021/ac071366y. Epub 2007 Nov 16.
We present a microfluidic cell-sorting device which augments microscopy with the capability to perform facile image-based cell sorting. This combination enables intuitive, complex phenotype sorting based on spatio-temporal fluorescence or cell morphology. The microfluidic device contains a microwell array that can be passively loaded with mammalian cells via sedimentation and can be subsequently inspected with microscopy. After inspection, we use the scattering force from a focused infrared laser to levitate cells of interest from their wells into a flow field for collection. First, we demonstrate image-based sorting predicated on whole-cell fluorescence, which could enable sorting based on temporal whole-cell fluorescence behavior. Second, we demonstrate image-based sorting predicated on fluorescence localization (nuclear vs whole-cell fluorescence), highlighting the capability of our approach to sort based on imaged subcellular events, such as localized protein expression or translocation events. We achieve postsort purities up to 89% and up to 155-fold enrichment of target cells. Optical manipulation literature and a direct cell viability assay suggest that cells remain viable after using our technique. The architecture is highly scalable and supports over 10 000 individually addressable trap sites. Our approach enables sorting of significant populations based on subcellular spatio-temporal information, which is difficult or impossible with existing widespread sorting technologies.
我们展示了一种微流控细胞分选装置,该装置通过具备执行基于图像的便捷细胞分选能力来增强显微镜功能。这种结合能够基于时空荧光或细胞形态进行直观、复杂的表型分选。该微流控装置包含一个微孔阵列,可通过沉降被动加载哺乳动物细胞,随后可用显微镜进行检查。检查后,我们利用聚焦红外激光的散射力将感兴趣的细胞从其孔中悬浮到流场中进行收集。首先,我们展示了基于全细胞荧光的基于图像的分选,这能够基于全细胞荧光的时间行为进行分选。其次,我们展示了基于荧光定位(细胞核荧光与全细胞荧光)的基于图像的分选,突出了我们的方法基于成像的亚细胞事件(如局部蛋白表达或转位事件)进行分选的能力。我们实现了分选后高达89%的纯度以及目标细胞高达155倍的富集。光学操纵文献和直接细胞活力测定表明,使用我们的技术后细胞仍保持活力。该架构具有高度可扩展性,支持超过10000个可单独寻址的捕获位点。我们的方法能够基于亚细胞时空信息对大量细胞进行分选,这对于现有的广泛使用的分选技术来说是困难或不可能的。