Suppr超能文献

HIV感染的数学生物学:抗原变异与多样性阈值

Mathematical biology of HIV infections: antigenic variation and diversity threshold.

作者信息

Nowak M A, May R M

机构信息

Department of Zoology, University of Oxford, England.

出版信息

Math Biosci. 1991 Sep;106(1):1-21. doi: 10.1016/0025-5564(91)90037-j.

Abstract

Infection with the human immunodeficiency virus (HIV) results in severe damage to the immune system and consequent disease (AIDS) after a long and variable incubation period (on average 8-10 years). Why the incubation period should be so long is a puzzle. We outline an explanation based on the dynamics of the interplay between the immune response and antigenic variation in the virus population. The essential idea is that AIDS results when the diversity of antigenic variants of HIV in an infected patient exceeds some threshold, beyond which the immune system can no longer cope. The paper develops a simple mathematical model for this process, based on experimental observations, and explores several ramifications.

摘要

感染人类免疫缺陷病毒(HIV)会导致免疫系统严重受损,并在漫长且多变的潜伏期(平均8 - 10年)后引发疾病(艾滋病)。潜伏期为何如此之长仍是一个谜。我们基于免疫反应与病毒群体中抗原变异之间相互作用的动态过程给出一种解释。其核心观点是,当感染患者体内HIV抗原变体的多样性超过某个阈值时,就会引发艾滋病,超过该阈值后免疫系统便无法应对。本文基于实验观察结果为此过程建立了一个简单的数学模型,并探讨了几个相关问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验