Suppr超能文献

基因关联研究中的荟萃分析方法:对其潜力与缺陷的综述

Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls.

作者信息

Kavvoura Fotini K, Ioannidis John P A

机构信息

Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, University Campus, Ioannina, 45110, Greece.

出版信息

Hum Genet. 2008 Feb;123(1):1-14. doi: 10.1007/s00439-007-0445-9. Epub 2007 Nov 17.

Abstract

Meta-analysis offers the opportunity to combine evidence from retrospectively accumulated or prospectively generated data. Meta-analyses may provide summary estimates and can help in detecting and addressing potential inconsistency between the combined datasets. Application of meta-analysis in genetic associations presents considerable potential and several pitfalls. In this review, we present basic principles of meta-analytic methods, adapted for human genome epidemiology. We describe issues that arise in the retrospective or the prospective collection of relevant data through various sources, common traps to consider in the appraisal of evidence and potential biases that may interfere. We describe the relative merits and caveats for common methods used to trace inconsistency across studies along with possible reasons for non-replication of proposed associations. Different statistical models may be employed to combine data and some common misconceptions may arise in the process. Several meta-analysis diagnostics are often applied or misapplied in the literature, and we comment on their use and limitations. An alternative to overcome limitations arising from retrospective combination of data from published studies is to create networks of research teams working in the same field and perform collaborative meta-analyses of individual participant data, ideally on a prospective basis. We discuss the advantages and the challenges inherent in such collaborative approaches. Meta-analysis can be a useful tool in dissecting the genetics of complex diseases and traits, provided its methods are properly applied and interpreted.

摘要

荟萃分析提供了整合回顾性积累数据或前瞻性生成数据证据的机会。荟萃分析可以提供汇总估计值,并有助于发现和解决合并数据集之间潜在的不一致性。荟萃分析在基因关联研究中的应用具有相当大的潜力,但也存在一些陷阱。在本综述中,我们介绍了适用于人类基因组流行病学的荟萃分析方法的基本原理。我们描述了通过各种来源回顾性或前瞻性收集相关数据时出现的问题、评估证据时需要考虑的常见陷阱以及可能干扰的潜在偏差。我们描述了用于追踪不同研究间不一致性的常用方法的相对优缺点和注意事项,以及所提出关联无法重复的可能原因。可以采用不同的统计模型来合并数据,在此过程中可能会出现一些常见的误解。文献中经常应用或误用几种荟萃分析诊断方法,我们对其使用方法和局限性进行了评论。克服已发表研究数据回顾性合并所产生局限性的一种替代方法是创建同一领域研究团队的网络,并对个体参与者数据进行协作性荟萃分析,理想情况下是前瞻性的。我们讨论了这种协作方法固有的优点和挑战。如果荟萃分析的方法得到正确应用和解释,它可以成为剖析复杂疾病和性状遗传学的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验