Jukanti Aravind K, Heidlebaugh Nancy M, Parrott David L, Fischer Isabelle A, McInnerney Kate, Fischer Andreas M
Plant Sciences and Plant Pathology.
Functional Genomics Core Facility, Montana State University, Bozeman, MT 59717, USA.
New Phytol. 2008;177(2):333-349. doi: 10.1111/j.1469-8137.2007.02270.x. Epub 2007 Nov 19.
To identify genes involved in the regulation and execution of leaf senescence and whole-plant nitrogen reallocation, near-isogenic barley germplasm divergent in senescence timing and protein concentration of mature grains was contrasted. Barley lines differing in allelic state at a major locus on chromosome six, controlling grain protein concentration, were obtained after four generations of backcrossing. Based on physiological data indicating major differences between low- and high-grain protein germplasm at 14-21 d past anthesis, the flag leaf and kernel transcriptomes of the low-protein parent and one high-protein near-isogenic line were compared at these time points, using the 22-k Barley1 Affymetrix microarray. Our data associate several genes with both known (based on sequence comparisons) and unknown functions with the senescence process. These include leucine-rich repeat transmembrane protein kinases, a glycine-rich RNA-binding protein with homology to AtGRP7 and a 'mother of FT/TF1' gene. Our data also indicate upregulation of genes coding for both plastidial and extraplastidial proteases in germplasm with accelerated leaf senescence. Functional characterization of candidate genes identified by this research may contribute to our understanding of the molecular network underlying leaf senescence and nitrogen reallocation.
为了鉴定参与叶片衰老调控与执行以及全株氮素重新分配的基因,对衰老时间和成熟籽粒蛋白质浓度存在差异的近等基因大麦种质进行了对比。在经过四代回交后,获得了在控制籽粒蛋白质浓度的第六条染色体上一个主要位点的等位基因状态不同的大麦品系。基于表明在开花后14 - 21天低籽粒蛋白和高籽粒蛋白种质之间存在主要差异的生理数据,在这些时间点使用22 - k大麦1 Affymetrix微阵列比较了低蛋白亲本和一个高蛋白近等基因系的旗叶和籽粒转录组。我们的数据将几个具有已知(基于序列比较)和未知功能的基因与衰老过程联系起来。这些基因包括富含亮氨酸重复序列的跨膜蛋白激酶、与AtGRP7具有同源性的富含甘氨酸的RNA结合蛋白以及一个“FT/TF1之母”基因。我们的数据还表明,在叶片衰老加速的种质中,编码质体和质体外蛋白酶的基因上调。通过本研究鉴定的候选基因的功能表征可能有助于我们理解叶片衰老和氮素重新分配背后的分子网络。