Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
Theor Appl Genet. 2021 Jan;134(1):351-366. doi: 10.1007/s00122-020-03701-1. Epub 2020 Oct 21.
Two key barley genes independently control anthesis and senescence timing, enabling the manipulation of grain fill duration, grain size/plumpness, and grain protein concentration. Plant developmental processes such as flowering and senescence have direct effects on cereal yield and quality. Previous work highlighted the importance of two tightly linked genes encoding a glycine-rich RNA-binding protein (HvGR-RBP1) and a NAC transcription factor (HvNAM1), controlling barley anthesis timing, senescence, and percent grain protein. Varieties that differ in HvGR-RBP1 expression, 'Karl'(low) and 'Lewis'(high), also differ in sequence 1 KB upstream of translation start site, including an ~ 400 bp G rich insertion in the 5'-flanking region of the 'Karl' allele, which could disrupt gene expression. To improve malt quality, the (low-grain protein, delayed-senescence) 'Karl' HvNAM1 allele was introgressed into Montana germplasm. After several seasons of selection, the resulting germplasm was screened for the allelic combinations of HvGR-RBP1 and HvNAM1, finding lines combining 'Karl' alleles for both genes (-/-), lines combining 'Lewis' (functional, expressed) HvGR-RBP1 with 'Karl' HvNAM1 alleles ( ±), and lines combining 'Lewis' alleles for both genes (+ / +). Field experiments indicate that the functional ('Lewis,' +) HvGR-RBP1 allele is associated with earlier anthesis and with slightly shorter plants, while the 'Karl' (-) HvNAM1 allele delays maturation. Genotypes carrying the ± allele combination therefore had a significantly (3 days) extended grain fill duration, leading to a higher percentage of plump kernels, slightly enhanced test weight, and lower grain protein concentration when compared to the other allele combinations. Overall, our data suggest an important function for HvGR-RBP1 in the control of barley reproductive development and set the stage for a more detailed functional analysis of this gene.
两个关键的大麦基因独立控制开花和衰老的时间,使人们能够操纵灌浆持续时间、籽粒大小/饱满度和籽粒蛋白质浓度。植物发育过程,如开花和衰老,直接影响谷类作物的产量和质量。以前的工作强调了两个紧密连锁的基因(编码富含甘氨酸的 RNA 结合蛋白(HvGR-RBP1)和 NAC 转录因子(HvNAM1))对大麦开花时间、衰老和籽粒蛋白质百分率的重要性。在 HvGR-RBP1 表达上不同的品种“Karl”(低)和“Lewis”(高),在翻译起始位点上游 1KB 的序列上也存在差异,包括“Karl”等位基因 5'-侧翼区域中约 400bp 的 G 丰富插入,这可能会破坏基因表达。为了提高麦芽质量,将(低蛋白、衰老延迟)“Karl”HvNAM1 等位基因导入蒙大拿种质中。经过几个季节的选择,对产生的种质进行了 HvGR-RBP1 和 HvNAM1 等位基因的组合筛选,发现了组合了两个基因的“Karl”等位基因的系(-/-),组合了“Lewis”(功能表达)HvGR-RBP1 和“Karl”HvNAM1 等位基因的系( ±),以及组合了两个基因的“Lewis”等位基因的系(+ / +)。田间试验表明,功能(“Lewis”, +)HvGR-RBP1 等位基因与较早的开花和稍短的植株有关,而“Karl”(-)HvNAM1 等位基因延迟成熟。携带 ± 等位基因组合的基因型因此灌浆持续时间显著延长(3 天),导致饱满籽粒的比例更高,千粒重略有提高,籽粒蛋白质浓度略低,与其他等位基因组合相比。总体而言,我们的数据表明 HvGR-RBP1 在大麦生殖发育的控制中具有重要功能,并为该基因的更详细功能分析奠定了基础。