Murray Christopher J L, Lopez Alan D, Barofsky Jeremy T, Bryson-Cahn Chloe, Lozano Rafael
Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America.
PLoS Med. 2007 Nov 20;4(11):e326. doi: 10.1371/journal.pmed.0040326.
Cause-of-death data for many developing countries are not available. Information on deaths in hospital by cause is available in many low- and middle-income countries but is not a representative sample of deaths in the population. We propose a method to estimate population cause-specific mortality fractions (CSMFs) using data already collected in many middle-income and some low-income developing nations, yet rarely used: in-hospital death records.
For a given cause of death, a community's hospital deaths are equal to total community deaths multiplied by the proportion of deaths occurring in hospital. If we can estimate the proportion dying in hospital, we can estimate the proportion dying in the population using deaths in hospital. We propose to estimate the proportion of deaths for an age, sex, and cause group that die in hospital from the subset of the population where vital registration systems function or from another population. We evaluated our method using nearly complete vital registration (VR) data from Mexico 1998-2005, which records whether a death occurred in a hospital. In this validation test, we used 45 disease categories. We validated our method in two ways: nationally and between communities. First, we investigated how the method's accuracy changes as we decrease the amount of Mexican VR used to estimate the proportion of each age, sex, and cause group dying in hospital. Decreasing VR data used for this first step from 100% to 9% produces only a 12% maximum relative error between estimated and true CSMFs. Even if Mexico collected full VR information only in its capital city with 9% of its population, our estimation method would produce an average relative error in CSMFs across the 45 causes of just over 10%. Second, we used VR data for the capital zone (Distrito Federal and Estado de Mexico) and estimated CSMFs for the three lowest-development states. Our estimation method gave an average relative error of 20%, 23%, and 31% for Guerrero, Chiapas, and Oaxaca, respectively.
Where accurate International Classification of Diseases (ICD)-coded cause-of-death data are available for deaths in hospital and for VR covering a subset of the population, we demonstrated that population CSMFs can be estimated with low average error. In addition, we showed in the case of Mexico that this method can substantially reduce error from biased hospital data, even when applied to areas with widely different levels of development. For countries with ICD-coded deaths in hospital, this method potentially allows the use of existing data to inform health policy.
许多发展中国家没有死因数据。许多低收入和中等收入国家有按病因分类的医院死亡信息,但这并非全体人口死亡情况的代表性样本。我们提出一种方法,利用许多中等收入和一些低收入发展中国家已收集但很少使用的数据(即医院死亡记录)来估计特定病因的人群死亡率(CSMF)。
对于给定的死因,一个社区的医院死亡人数等于社区总死亡人数乘以在医院发生的死亡比例。如果我们能估计在医院死亡的比例,那么就可以利用医院死亡数据来估计人群中的死亡比例。我们建议从生命登记系统正常运行的人群子集或其他人群中估计某个年龄、性别和病因组在医院死亡的比例。我们使用1998 - 2005年墨西哥几乎完整的生命登记(VR)数据对我们的方法进行了评估,该数据记录了死亡是否发生在医院。在这个验证测试中,我们使用了45种疾病类别。我们通过两种方式验证了我们的方法:全国范围内和社区之间。首先,我们研究了随着用于估计每个年龄、性别和病因组在医院死亡比例的墨西哥VR数据量减少,该方法的准确性如何变化。将用于第一步的VR数据从100%减少到9%,估计的CSMF与真实CSMF之间的最大相对误差仅为12%。即使墨西哥仅在占其人口9%的首都收集了完整的VR信息,我们的估计方法在45种病因的CSMF上产生的平均相对误差也仅略高于10%。其次,我们使用首都地区(联邦区和墨西哥州)的VR数据,估计了三个发展程度最低的州的CSMF。我们的估计方法在格雷罗州、恰帕斯州和瓦哈卡州分别产生了20%、23%和31%的平均相对误差。
在有准确的国际疾病分类(ICD)编码的医院死亡数据以及涵盖部分人群的VR数据的情况下,我们证明可以以较低的平均误差估计人群CSMF。此外,我们以墨西哥为例表明,即使应用于发展水平差异很大的地区,该方法也能大幅减少有偏差医院数据带来的误差。对于有医院ICD编码死亡数据的国家,该方法可能允许利用现有数据为卫生政策提供信息。