School of Electrical and Computer Engineering, University of Tehran, Iran.
Med Phys. 2010 Aug;37(8):4501-16. doi: 10.1118/1.3459018.
The authors propose a fast, robust, nonparametric, entropy-based, coupled, multishape approach to segment subcortical brain structures from magnetic resonance images (MRIs).
The proposed method uses three types of information: Image intensity, tissue types, and locations of structures. The image intensity information is captured by estimating the probability density function (pdf) of the image intensities in each structure. The tissue type information is captured by applying an unsupervised tissue segmentation method to the image and estimating a probability mass function (pmf) for the tissue type of each structure. The location information is captured by estimating pdf of the location of each structure from the training datasets. The resulting pmf's and pdf's are used to define an entropy function whose minimum corresponds to a desirable segmentation of the structures. The authors propose a three-step optimization strategy for the segmentation method. In the first step, a powerful automatic initialization method is developed based on tissue type and location information of the structures. In the second step, a quasi-Newton method is used to optimize the parameters of the energy function. To speed up the iterations, derivatives of the energy function with respect to its parameters are analytically derived and used in the optimization process. In the last step, the limitations related to the prior shape model are removed and a level-set method is applied for the fine tuning of the segmentation results.
The proposed method is applied to two different datasets and the results are compared to those of previous methods in literature. Experimental results are presented for lateral ventricles, caudate, thalamus, putamen, pallidum, hippocampus, and amygdala.
The results illustrate superior performance of the proposed segmentation method compared to other methods in literature. The execution time of the algorithm is a few minutes, suitable for a variety of applications.
作者提出了一种快速、鲁棒、基于熵的非参数、耦合、多形状方法,用于从磁共振图像 (MRI) 中分割皮质下脑结构。
所提出的方法使用三种类型的信息:图像强度、组织类型和结构位置。图像强度信息通过估计每个结构中的图像强度的概率密度函数 (pdf) 来捕获。组织类型信息通过将无监督组织分割方法应用于图像并估计每个结构的组织类型的概率质量函数 (pmf) 来捕获。位置信息通过从训练数据集中估计每个结构的位置的 pdf 来捕获。所得到的 pmf 和 pdf 用于定义一个熵函数,其最小值对应于结构的理想分割。作者提出了一种三步优化策略来分割方法。在第一步中,基于结构的组织类型和位置信息开发了一种强大的自动初始化方法。在第二步中,使用拟牛顿法优化能量函数的参数。为了加快迭代速度,分析推导了能量函数相对于其参数的导数,并在优化过程中使用。在最后一步,消除了与先验形状模型相关的限制,并应用水平集方法对分割结果进行微调。
该方法应用于两个不同的数据集,并将结果与文献中的先前方法进行比较。实验结果显示了侧脑室、尾状核、丘脑、壳核、苍白球、海马和杏仁核的结果。
结果表明,与文献中的其他方法相比,所提出的分割方法具有优越的性能。算法的执行时间为几分钟,适用于各种应用。