Suppr超能文献

突触学会利用随机的前突触释放来预测后突触动力学。

Synapses learn to utilize stochastic pre-synaptic release for the prediction of postsynaptic dynamics.

机构信息

III. Physikalisches Institut - Biophysik, Georg-August Universität, Göttingen, Germany.

Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany.

出版信息

PLoS Comput Biol. 2024 Nov 4;20(11):e1012531. doi: 10.1371/journal.pcbi.1012531. eCollection 2024 Nov.

Abstract

Synapses in the brain are highly noisy, which leads to a large trial-by-trial variability. Given how costly synapses are in terms of energy consumption these high levels of noise are surprising. Here we propose that synapses use noise to represent uncertainties about the somatic activity of the postsynaptic neuron. To show this, we developed a mathematical framework, in which the synapse as a whole interacts with the soma of the postsynaptic neuron in a similar way to an agent that is situated and behaves in an uncertain, dynamic environment. This framework suggests that synapses use an implicit internal model of the somatic membrane dynamics that is being updated by a synaptic learning rule, which resembles experimentally well-established LTP/LTD mechanisms. In addition, this approach entails that a synapse utilizes its inherently noisy synaptic release to also encode its uncertainty about the state of the somatic potential. Although each synapse strives for predicting the somatic dynamics of its postsynaptic neuron, we show that the emergent dynamics of many synapses in a neuronal network resolve different learning problems such as pattern classification or closed-loop control in a dynamic environment. Hereby, synapses coordinate themselves to represent and utilize uncertainties on the network level in behaviorally ambiguous situations.

摘要

大脑中的突触噪声很大,这导致了试验间的变异性很大。鉴于突触在能量消耗方面的成本很高,这种高水平的噪声令人惊讶。在这里,我们提出突触利用噪声来表示对突触后神经元胞体活动的不确定性。为了证明这一点,我们开发了一个数学框架,其中整个突触以与位于不确定、动态环境中的代理类似的方式与突触后神经元的胞体相互作用。该框架表明,突触使用其内部的膜动力学的隐式模型,该模型由突触学习规则进行更新,类似于实验中确立的 LTP/LTD 机制。此外,这种方法意味着突触利用其固有的噪声性突触释放,也对其关于胞体势状态的不确定性进行编码。虽然每个突触都在努力预测其突触后神经元的胞体动力学,但我们表明,神经元网络中许多突触的涌现动力学可以解决不同的学习问题,例如在动态环境中的模式分类或闭环控制。通过这种方式,突触在行为上模棱两可的情况下协调自身,以在网络级别上表示和利用不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523f/11534197/9523d408e855/pcbi.1012531.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验