Dopman Erik B, Hartl Daniel L
Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19920-5. doi: 10.1073/pnas.0709888104. Epub 2007 Dec 4.
Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.
20世纪20年代和30年代,托马斯·亨特·摩根及其同事在果蝇中发现了基因拷贝数的变异,并将这种变异与表型差异联系起来[布里奇斯·C·B(1936年)《科学》83:210]。然而,对于染色体数量、染色体区域或基因拷贝数变异的程度,以及这种变异在物种内的重要性,我们仍然知之甚少。在这里,我们聚焦于黑腹果蝇的拷贝数变异。我们对基因组区域的拷贝数多态性(CNP)进行了表征,并对比了不同模式以推断作用于这种变异的进化过程。黑腹果蝇的拷贝数变异分布并非随机,这大概是由于串联重复或其他机制产生的突变偏差所致。然而,对编码和非编码CNP的比较显示,纯化选择在从功能受限区域去除结构变异方面具有很强的作用。黑腹果蝇中大多数CNP模式表明,负选择和突变偏差是塑造结构变异的主要因素。