Suppr超能文献

黑腹果蝇中拷贝数多态性的一幅写照。

A portrait of copy-number polymorphism in Drosophila melanogaster.

作者信息

Dopman Erik B, Hartl Daniel L

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19920-5. doi: 10.1073/pnas.0709888104. Epub 2007 Dec 4.

Abstract

Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.

摘要

20世纪20年代和30年代,托马斯·亨特·摩根及其同事在果蝇中发现了基因拷贝数的变异,并将这种变异与表型差异联系起来[布里奇斯·C·B(1936年)《科学》83:210]。然而,对于染色体数量、染色体区域或基因拷贝数变异的程度,以及这种变异在物种内的重要性,我们仍然知之甚少。在这里,我们聚焦于黑腹果蝇的拷贝数变异。我们对基因组区域的拷贝数多态性(CNP)进行了表征,并对比了不同模式以推断作用于这种变异的进化过程。黑腹果蝇的拷贝数变异分布并非随机,这大概是由于串联重复或其他机制产生的突变偏差所致。然而,对编码和非编码CNP的比较显示,纯化选择在从功能受限区域去除结构变异方面具有很强的作用。黑腹果蝇中大多数CNP模式表明,负选择和突变偏差是塑造结构变异的主要因素。

相似文献

1
A portrait of copy-number polymorphism in Drosophila melanogaster.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19920-5. doi: 10.1073/pnas.0709888104. Epub 2007 Dec 4.
2
Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster.
Science. 2008 Jun 20;320(5883):1629-31. doi: 10.1126/science.1158078. Epub 2008 Jun 5.
3
Purifying selection maintains highly conserved noncoding sequences in Drosophila.
Mol Biol Evol. 2007 Oct;24(10):2222-34. doi: 10.1093/molbev/msm150. Epub 2007 Jul 23.
5
Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.
Mol Biol Evol. 2016 May;33(5):1308-16. doi: 10.1093/molbev/msw014. Epub 2016 Jan 25.
6
Drosophila duplication hotspots are associated with late-replicating regions of the genome.
PLoS Genet. 2011 Nov;7(11):e1002340. doi: 10.1371/journal.pgen.1002340. Epub 2011 Nov 3.
7
Background selection as baseline for nucleotide variation across the Drosophila genome.
PLoS Genet. 2014 Jun 26;10(6):e1004434. doi: 10.1371/journal.pgen.1004434. eCollection 2014 Jun.
9
Rates and genomic consequences of spontaneous mutational events in Drosophila melanogaster.
Genetics. 2013 Aug;194(4):937-54. doi: 10.1534/genetics.113.151670. Epub 2013 Jun 3.

引用本文的文献

3
Rapid evolution of piRNA clusters in the ovary.
Genome Res. 2024 Jun 25;34(5):711-724. doi: 10.1101/gr.278062.123.
5
Recent advances and current challenges in population genomics of structural variation in animals and plants.
Front Genet. 2022 Nov 29;13:1060898. doi: 10.3389/fgene.2022.1060898. eCollection 2022.
6
DNA copy number variation: Main characteristics, evolutionary significance, and pathological aspects.
Biomed J. 2021 Oct;44(5):548-559. doi: 10.1016/j.bj.2021.02.003. Epub 2021 Feb 13.
7
Correspondence of aCGH and long-read genome assembly for detection of copy number differences: A proof-of-concept with cichlid genomes.
PLoS One. 2021 Oct 7;16(10):e0258193. doi: 10.1371/journal.pone.0258193. eCollection 2021.
8
Evolution of Conserved Noncoding Sequences in Arabidopsis thaliana.
Mol Biol Evol. 2021 Jun 25;38(7):2692-2703. doi: 10.1093/molbev/msab042.
9
Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response.
Genome Res. 2020 Nov;30(11):1583-1592. doi: 10.1101/gr.261586.120. Epub 2020 Oct 8.
10
The role of copy-number variation in the reinforcement of sexual isolation between the two European subspecies of the house mouse.
Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190540. doi: 10.1098/rstb.2019.0540. Epub 2020 Jul 13.

本文引用的文献

1
Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction.
Integr Comp Biol. 2007 Sep;47(3):427-45. doi: 10.1093/icb/icm046. Epub 2007 Jun 1.
2
3
Diet and the evolution of human amylase gene copy number variation.
Nat Genet. 2007 Oct;39(10):1256-60. doi: 10.1038/ng2123. Epub 2007 Sep 9.
4
The Release 5.1 annotation of Drosophila melanogaster heterochromatin.
Science. 2007 Jun 15;316(5831):1586-91. doi: 10.1126/science.1139815.
5
6
Relative impact of nucleotide and copy number variation on gene expression phenotypes.
Science. 2007 Feb 9;315(5813):848-53. doi: 10.1126/science.1136678.
7
Global variation in copy number in the human genome.
Nature. 2006 Nov 23;444(7118):444-54. doi: 10.1038/nature05329.
8
Speciation genetics: evolving approaches.
Nat Rev Genet. 2006 Nov;7(11):851-61. doi: 10.1038/nrg1968. Epub 2006 Oct 3.
9
Preferential duplication in the sparse part of yeast protein interaction network.
Mol Biol Evol. 2006 Dec;23(12):2467-73. doi: 10.1093/molbev/msl121. Epub 2006 Sep 15.
10
Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression.
Bioinformatics. 2006 Oct 15;22(20):2577-9. doi: 10.1093/bioinformatics/btl422. Epub 2006 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验