Suppr超能文献

相似文献

1
A variable topology for the 30-nm chromatin fibre.
EMBO Rep. 2007 Dec;8(12):1129-34. doi: 10.1038/sj.embor.7401115.
2
X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
Nature. 2005 Jul 7;436(7047):138-41. doi: 10.1038/nature03686.
3
The folding and unfolding of eukaryotic chromatin.
Curr Opin Genet Dev. 2009 Apr;19(2):159-65. doi: 10.1016/j.gde.2009.02.010. Epub 2009 Apr 5.
4
Structure of the '30 nm' chromatin fibre: a key role for the linker histone.
Curr Opin Struct Biol. 2006 Jun;16(3):336-43. doi: 10.1016/j.sbi.2006.05.007. Epub 2006 May 22.
5
A metastable structure for the compact 30-nm chromatin fibre.
FEBS Lett. 2016 Apr;590(7):935-42. doi: 10.1002/1873-3468.12128. Epub 2016 Mar 30.
6
Topological constraints on the possible structures of the 30 nm chromatin fibre.
Chromosoma. 2008 Feb;117(1):67-76. doi: 10.1007/s00412-007-0127-3. Epub 2007 Oct 13.
7
Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays.
J Biol Chem. 2019 Mar 15;294(11):4233-4246. doi: 10.1074/jbc.RA118.006412. Epub 2019 Jan 10.
8
Near-atomic resolution structures of interdigitated nucleosome fibres.
Nat Commun. 2020 Sep 21;11(1):4747. doi: 10.1038/s41467-020-18533-2.
9
Structural insights of nucleosome and the 30-nm chromatin fiber.
Curr Opin Struct Biol. 2016 Feb;36:106-15. doi: 10.1016/j.sbi.2016.01.013. Epub 2016 Feb 9.
10
DNA topology in chromatin is defined by nucleosome spacing.
Sci Adv. 2017 Oct 27;3(10):e1700957. doi: 10.1126/sciadv.1700957. eCollection 2017 Oct.

引用本文的文献

1
Irregular Chromatin: Packing Density, Fiber Width, and Occurrence of Heterogeneous Clusters.
Biophys J. 2020 Jan 7;118(1):207-218. doi: 10.1016/j.bpj.2019.11.004. Epub 2019 Nov 14.
3
Insight into the machinery that oils chromatin dynamics.
Nucleus. 2016 Nov;7(6):532-539. doi: 10.1080/19491034.2016.1255392. Epub 2016 Nov 28.
4
Unraveling the 3D genome: genomics tools for multiscale exploration.
Trends Genet. 2015 Jul;31(7):357-72. doi: 10.1016/j.tig.2015.03.010. Epub 2015 Apr 14.
5
DNA self-assembly: from chirality to evolution.
Int J Mol Sci. 2013 Apr 15;14(4):8252-70. doi: 10.3390/ijms14048252.
6
Selective association between nucleosomes with identical DNA sequences.
Nucleic Acids Res. 2013 Feb 1;41(3):1544-54. doi: 10.1093/nar/gks1269. Epub 2012 Dec 18.
8
Toward convergence of experimental studies and theoretical modeling of the chromatin fiber.
J Biol Chem. 2012 Feb 17;287(8):5183-91. doi: 10.1074/jbc.R111.305763. Epub 2011 Dec 7.

本文引用的文献

2
Higher-order structures of chromatin: the elusive 30 nm fiber.
Cell. 2007 Feb 23;128(4):651-4. doi: 10.1016/j.cell.2007.02.008.
3
Loss of linker histone H1 in cellular senescence.
J Cell Biol. 2006 Dec 18;175(6):869-80. doi: 10.1083/jcb.200604005. Epub 2006 Dec 11.
4
Structure of the '30 nm' chromatin fibre: a key role for the linker histone.
Curr Opin Struct Biol. 2006 Jun;16(3):336-43. doi: 10.1016/j.sbi.2006.05.007. Epub 2006 May 22.
5
EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11. doi: 10.1073/pnas.0601212103. Epub 2006 Apr 14.
6
X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
Nature. 2005 Jul 7;436(7047):138-41. doi: 10.1038/nature03686.
7
Nucleosome arrays reveal the two-start organization of the chromatin fiber.
Science. 2004 Nov 26;306(5701):1571-3. doi: 10.1126/science.1103124.
8
Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs.
J Mol Biol. 2003 Aug 29;331(5):1025-40. doi: 10.1016/s0022-2836(03)00831-3.
9
Organization of internucleosomal DNA in rat liver chromatin.
EMBO J. 1983;2(1):51-6. doi: 10.1002/j.1460-2075.1983.tb01379.x.
10
Distinctive higher-order chromatin structure at mammalian centromeres.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11949-54. doi: 10.1073/pnas.211322798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验