Suppr超能文献

炎症与脊髓损伤:浸润性白细胞作为损伤和修复过程的决定因素

Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes.

作者信息

Trivedi Alpa, Olivas Andrea D, Noble-Haeusslein Linda J

机构信息

Department of Neurosurgery, University of California San Francisco, CA 94143.

出版信息

Clin Neurosci Res. 2006 Dec;6(5):283-292. doi: 10.1016/j.cnr.2006.09.007.

Abstract

The immune response that accompanies spinal cord injury contributes to both injury and reparative processes. It is this duality that is the focus of this review. Here we consider the complex cellular and molecular immune responses that lead to the infiltration of leukocytes and glial activation, promote oxidative stress and tissue damage, influence wound healing, and subsequently modulate locomotor recovery. Immunomodulatory strategies to improve outcomes are gaining momentum as ongoing research carefully dissects those pathways, which likely mediate cell injury from those, which favor recovery processes. Current therapeutic strategies address divergent approaches including early immunoblockade and vaccination with immune cells to prevent early tissue damage and support a wound-healing environment that favors plasticity. Despite these advances, there remain basic questions regarding how inflammatory cells interact in the injured spinal cord. Such questions likely arise as a result of our limited understanding of immune cell/neural interactions in a dynamic environment that culminates in progressive cell injury, demyelination, and regenerative failure.

摘要

伴随脊髓损伤的免疫反应对损伤和修复过程都有影响。正是这种双重性成为了本综述的重点。在此,我们探讨复杂的细胞和分子免疫反应,这些反应导致白细胞浸润和胶质细胞活化,促进氧化应激和组织损伤,影响伤口愈合,并随后调节运动功能恢复。随着正在进行的研究仔细剖析那些可能介导细胞损伤的途径与那些有利于恢复过程的途径,改善治疗结果的免疫调节策略正越来越受到关注。当前的治疗策略采用了不同的方法,包括早期免疫阻断和用免疫细胞进行疫苗接种,以预防早期组织损伤并支持有利于可塑性的伤口愈合环境。尽管取得了这些进展,但关于炎症细胞在损伤脊髓中如何相互作用仍存在一些基本问题。这些问题的出现可能是由于我们对动态环境中免疫细胞与神经相互作用的理解有限,这种动态环境最终导致进行性细胞损伤、脱髓鞘和再生失败。

相似文献

1
Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes.
Clin Neurosci Res. 2006 Dec;6(5):283-292. doi: 10.1016/j.cnr.2006.09.007.
2
Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury.
Bioeng Transl Med. 2022 Aug 31;8(2):e10389. doi: 10.1002/btm2.10389. eCollection 2023 Mar.
4
Inflammatory pathways in spinal cord injury.
Int Rev Neurobiol. 2012;106:127-52. doi: 10.1016/B978-0-12-407178-0.00006-5.
5
Macrophage activation and its role in repair and pathology after spinal cord injury.
Brain Res. 2015 Sep 4;1619:1-11. doi: 10.1016/j.brainres.2014.12.045. Epub 2015 Jan 8.
7
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
Stem Cell Res Ther. 2021 Jan 7;12(1):36. doi: 10.1186/s13287-020-02090-y.
8
Degenerative and spontaneous regenerative processes after spinal cord injury.
J Neurotrauma. 2006 Mar-Apr;23(3-4):264-80. doi: 10.1089/neu.2006.23.263.

引用本文的文献

2
The role of oxidative stress in spinal cord ischemia reperfusion injury: mechanisms and therapeutic implications.
Front Cell Neurosci. 2025 Jun 24;19:1590493. doi: 10.3389/fncel.2025.1590493. eCollection 2025.
3
Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats.
Int J Mol Sci. 2025 Jun 11;26(12):5606. doi: 10.3390/ijms26125606.
4
Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going?
N Am Spine Soc J. 2025 Mar 5;22:100601. doi: 10.1016/j.xnsj.2025.100601. eCollection 2025 Jun.
5
Temporal and spatial pattern of DNA damage in neurons following spinal cord Injury in mice.
J Biomed Sci. 2025 Jan 23;32(1):12. doi: 10.1186/s12929-024-01104-8.
7
A review focuses on a neglected and controversial component of SCI: myelin debris.
Front Immunol. 2024 Nov 22;15:1436031. doi: 10.3389/fimmu.2024.1436031. eCollection 2024.
8
The Neutrophil-to-Lymphocyte Ratio in Patients with Spinal Cord Injury: A Narrative Review Study.
Medicina (Kaunas). 2024 Sep 25;60(10):1567. doi: 10.3390/medicina60101567.
9
Bridging the gap: a translational perspective in spinal cord injury.
Exp Biol Med (Maywood). 2024 Sep 26;249:10266. doi: 10.3389/ebm.2024.10266. eCollection 2024.
10
Identification of immune-related hub genes in spinal cord injury.
Eur J Med Res. 2024 Oct 4;29(1):483. doi: 10.1186/s40001-024-02075-0.

本文引用的文献

1
Microglial phenotype: is the commitment reversible?
Trends Neurosci. 2006 Feb;29(2):68-74. doi: 10.1016/j.tins.2005.12.005. Epub 2006 Jan 6.
4
The nitrosteroid NCX 1015, a prednisolone derivative, improves recovery of function in rats after spinal cord injury.
Brain Res. 2005 Nov 16;1062(1-2):16-25. doi: 10.1016/j.brainres.2005.08.057. Epub 2005 Nov 2.
5
The microglial "activation" continuum: from innate to adaptive responses.
J Neuroinflammation. 2005 Oct 31;2:24. doi: 10.1186/1742-2094-2-24.
6
FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat.
J Neurosci Res. 2005 Sep 15;81(6):827-36. doi: 10.1002/jnr.20605.
7
Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury.
J Neurosci. 2005 Jul 13;25(28):6576-83. doi: 10.1523/JNEUROSCI.0305-05.2005.
8
Blood-derived dendritic cells in an acute brain injury.
J Neuroimmunol. 2005 Sep;166(1-2):167-72. doi: 10.1016/j.jneuroim.2005.04.026.
9
Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats.
J Neurochem. 2005 Sep;94(5):1361-73. doi: 10.1111/j.1471-4159.2005.03280.x. Epub 2005 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验