Jacquez J A, O'Neill P
Department of Physiology, University of Michigan, Ann Arbor.
Math Biosci. 1991 Dec;107(2):161-86. doi: 10.1016/0025-5564(91)90003-2.
We compare threshold results for the deterministic and stochastic versions of the homogeneous SI model with recruitment, death due to the disease, a background death rate, and transmission rate beta cXY/N. If an infective is introduced into a population of susceptibles, the basic reproduction number, R0, plays a fundamental role for both, though the threshold results differ somewhat. For the deterministic model, no epidemic can occur if R0 less than or equal to 1 and an epidemic occurs if R0 greater than 1. For the stochastic model we find that on average, no epidemic will occur if R0 less than or equal to 1. If R0 greater than 1, there is a finite probability, but less than 1, that an epidemic will develop and eventuate in an endemic quasi-equilibrium. However, there is also a finite probability of extinction of the infection, and the probability of extinction decreases as R0 increases above 1.
我们比较了具有招募、因病死亡、背景死亡率以及传播率βcXY/N的齐次SI模型的确定性版本和随机版本的阈值结果。如果将一个感染者引入易感人群中,基本再生数R0对两者都起着基础性作用,尽管阈值结果略有不同。对于确定性模型,如果R0小于或等于1,则不会发生疫情;如果R0大于1,则会发生疫情。对于随机模型,我们发现平均而言,如果R0小于或等于1,就不会发生疫情。如果R0大于1,那么疫情发生并最终达到地方病准平衡状态的概率是有限的,但小于1。然而,感染也有有限的灭绝概率,并且随着R0在大于1时增加,灭绝概率会降低。