Jacquez J A, Simon C P
Department of Physiology, University of Michigan, Ann Arbor.
Math Biosci. 1993 Sep-Oct;117(1-2):77-125. doi: 10.1016/0025-5564(93)90018-6.
We compare the stochastic and deterministic versions of an SI model with recruitment, background deaths, and deaths due to the disease. For the stochastic version, analysis of the mean number of susceptibles, mx, and infecteds, m(y), and of the means conditioned on nonextinction of the infection, mx and my, shows that (1) if R0 < or = 1, the disease dies out monotonically for the deterministic and stochastic models, and (2) if R0 > 1, the disease dies out early with a probability close to (1/R0)a, where a is the number of infecteds introduced, or m(y) rises to a peak and then dies out slowly. For small populations, N, the peak is an obvious maximum. If N > or = 100, the peak in m(y) is hidden in a long, nearly stationary plateau and m*y is close to the deterministic endemic level for a large range of parameter values. The analytical results are illustrated with simulations. The results for the SI model are motivated by and compared with the corresponding results for the closed SIS model.
我们比较了具有招募、背景死亡和疾病导致死亡情况的SI模型的随机版本和确定性版本。对于随机版本,对易感者的平均数量(m_x)、感染者的平均数量(m_y)以及在感染不灭绝条件下的均值(m_x^)和(m_y^)进行分析,结果表明:(1)如果(R_0\leq1),对于确定性模型和随机模型,疾病都会单调消亡;(2)如果(R_0>1),疾病早期消亡的概率接近((1/R_0)^a),其中(a)是引入的感染者数量,或者(m_y)上升到一个峰值然后缓慢消亡。对于小种群(N),该峰值是一个明显的最大值。如果(N\geq100),(m_y)中的峰值隐藏在一个长的、近乎平稳的平台期内,并且在很大范围的参数值下(m_y^*)接近确定性地方病水平。通过模拟对分析结果进行了说明。SI模型的结果以封闭SIS模型的相应结果为动机并与之进行比较。