Tamponnet C, Martin-Garin A, Gonze M-A, Parekh N, Vallejo R, Sauras-Yera T, Casadesus J, Plassard C, Staunton S, Norden M, Avila R, Shaw G
Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, Saint-Paul-lez-Durance Cedex, France.
J Environ Radioact. 2008 May;99(5):820-30. doi: 10.1016/j.jenvrad.2007.10.011. Epub 2007 Dec 3.
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.
预测放射性核素意外释放后果的能力主要取决于对放射性核素与农业和自然生态系统不同组成部分相互作用机制的理解程度,以及将这些机制形式化纳入预测模型的程度。关于受污染农业和自然区域,已经获取了大量研究和数据库,但由于其未解决的变异性,它们在提高我们预测能力方面的应用在很大程度上受到了限制。这种变异性似乎源于对放射性核素与土壤基质、土壤湿度、土壤中的生物元素以及此类土壤中可能存在的其他污染物之间相互作用的认识不完整。在名为“土壤中放射性核素的生物可利用性(BORIS)”的第五个欧洲框架计划中,我们研究了非生物因素(土壤成分和土壤结构)和生物因素(有机化合物、植物、菌根和微生物)在土壤中放射性核素吸附/解吸以及植物对放射性核素吸收/释放过程中的作用。由于三种元素铯、锶和锝的放射性同位素具有重要性,因此对它们的生物可利用性进行了跟踪研究。在某些情况下,还仔细研究了另一种非放射性污染物(铜)的作用。已经证明了微生物(例如,在有机土壤中,微生物存在时铯和锶的分配系数K(d)比不存在时大得多)、植物生理学(例如,植物生理学的变化会影响植物对放射性核素的吸收)以及菌根真菌的存在(例如,干扰植物对放射性核素的吸收)所起的作用。从这些实验中获得的知识已被纳入两个机理模型CHEMFAST和BIORUR中,这两个模型专门用于模拟土壤基质中放射性核素的吸附/解吸以及植物对放射性核素的吸收/释放。通过引入放射性核素生物可利用性因子的概念,这些机理模型已被纳入一个评估模型中,以提高其预测能力。