Suppr超能文献

随机受试者旋转对扩散张量磁共振成像中优化扩散梯度采样方案的影响。

Effects of random subject rotation on optimised diffusion gradient sampling schemes in diffusion tensor MRI.

作者信息

Muñoz Maniega Susana, Bastin Mark E, Armitage Paul A

机构信息

Clinical Neurosciences, Western General Hospital, University of Edinburgh, EH4 2XU Edinburgh, UK.

出版信息

Magn Reson Imaging. 2008 May;26(4):451-60. doi: 10.1016/j.mri.2007.08.009. Epub 2008 Feb 20.

Abstract

The choice of the number (N) and orientation of diffusion sampling gradients required to measure accurately the water diffusion tensor remains contentious. Monte Carlo studies have suggested that between 20 and 30 uniformly distributed sampling orientations are required to provide robust estimates of water diffusions parameters. These simulations have not, however, taken into account what effect random subject motion, specifically rotation, might have on optimised gradient schemes, a problem which is especially relevant to clinical diffusion tensor MRI (DT-MRI). Here this question is investigated using Monte Carlo simulations of icosahedral sampling schemes and in vivo data. These polyhedra-based schemes, which have the advantage that large N can be created from optimised subsets of smaller N, appear to be ideal for the study of restless subjects since if scanning needs to be prematurely terminated it should be possible to identify a subset of images that have been acquired with a near optimised sampling scheme. The simulations and in vivo data show that as N increases, the rotational variance of fractional anisotropy (FA) estimates becomes progressively less dependent on the magnitude of subject rotation (alpha), while higher FA values are progressively underestimated as alpha increases. These data indicate that for large subject rotations the B-matrix should be recalculated to provide accurate diffusion anisotropy information.

摘要

准确测量水扩散张量所需的扩散采样梯度数量(N)和方向的选择仍然存在争议。蒙特卡罗研究表明,需要20到30个均匀分布的采样方向才能可靠地估计水扩散参数。然而,这些模拟没有考虑随机的受试者运动,特别是旋转,可能对优化的梯度方案有什么影响,这个问题与临床扩散张量磁共振成像(DT-MRI)特别相关。在此,使用二十面体采样方案的蒙特卡罗模拟和体内数据对这个问题进行了研究。这些基于多面体的方案具有这样的优势,即可以从较小N的优化子集中创建大的N,似乎非常适合研究躁动不安的受试者,因为如果扫描需要提前终止,应该能够识别出以接近优化采样方案采集的图像子集。模拟和体内数据表明,随着N的增加,分数各向异性(FA)估计值的旋转方差逐渐变得不太依赖于受试者旋转的幅度(α),而随着α的增加,较高的FA值逐渐被低估。这些数据表明,对于较大的受试者旋转,应该重新计算B矩阵以提供准确的扩散各向异性信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验