Heinzer Stephan, Wörz Stefan, Kalla Claudia, Rohr Karl, Weiss Matthias
Cellular Biophysics Group (BIOMS), German Cancer Research Center, Bioquant Center, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany.
J Cell Sci. 2008 Jan 1;121(Pt 1):55-64. doi: 10.1242/jcs.013383. Epub 2007 Dec 11.
Exit sites (ES) are specialized domains of the endoplasmic reticulum (ER) at which cargo proteins of the secretory pathway are packaged into COPII-coated vesicles. Although the essential COPII proteins (Sar1p, Sec23p-Sec24p, Sec13p-Sec31p) have been characterized in detail and their sequential binding kinetics at ER membranes have been quantified, the basic processes that govern the self-assembly and spatial organization of ERES have remained elusive. Here, we have formulated a generic computational model that describes the process of formation of ERES on a mesoscopic scale. The model predicts that ERES are arranged in a quasi-crystalline pattern, while their size strongly depends on the cargo-modulated kinetics of COPII turnover - that is, a lack of cargo leads to smaller and more mobile ERES. These predictions are in favorable agreement with experimental data obtained by fluorescence microscopy. The model further suggests that cooperative binding of COPII components, for example mediated by regulatory proteins, is a key factor for the experimentally observed organism-specific ERES pattern. Moreover, the anterograde secretory flux is predicted to grow when the average size of ERES is increased, whereas an increase in the number of (small) ERES only slightly alters the flux.
出口位点(ES)是内质网(ER)的特化区域,分泌途径的货物蛋白在此被包装到COPII包被的囊泡中。尽管基本的COPII蛋白(Sar1p、Sec23p - Sec24p、Sec13p - Sec31p)已被详细表征,并且它们在内质网膜上的顺序结合动力学也已被量化,但控制内质网出口位点(ERES)自组装和空间组织的基本过程仍然难以捉摸。在这里,我们构建了一个通用的计算模型,该模型在介观尺度上描述了ERES的形成过程。该模型预测ERES以准晶体模式排列,而它们的大小强烈依赖于货物调节的COPII周转动力学——也就是说,缺乏货物会导致更小且更易移动的ERES。这些预测与通过荧光显微镜获得的实验数据高度吻合。该模型进一步表明,COPII组分的协同结合,例如由调节蛋白介导的结合,是实验观察到的特定生物体ERES模式的关键因素。此外,当ERES的平均大小增加时,预测顺行分泌通量会增加,而(小)ERES数量的增加只会轻微改变通量。