Suppr超能文献

bZIP转录因子的祖先蛋白质相互作用网络的重建

Reconstruction of ancestral protein interaction networks for the bZIP transcription factors.

作者信息

Pinney John W, Amoutzias Grigoris D, Rattray Magnus, Robertson David L

机构信息

Faculty of Life Sciences and School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20449-53. doi: 10.1073/pnas.0706339104. Epub 2007 Dec 12.

Abstract

As whole-genome protein-protein interaction datasets become available for a wide range of species, evolutionary biologists have the opportunity to address some of the unanswered questions surrounding the evolution of these complex systems. Protein interaction networks from divergent organisms may be compared to investigate how gene duplication, deletion, and rewiring processes have shaped the evolution of their contemporary structures. However, current approaches for comparing observed networks from multiple species lack the phylogenetic context necessary to reconstruct the evolutionary history of a network. Here we show how probabilistic modeling can provide a platform for the quantitative analysis of multiple protein interaction networks. We apply this technique to the reconstruction of ancestral networks for the bZIP family of transcription factors and find that excellent agreement is obtained with an alternative sequence-based method for the prediction of leucine zipper interactions. Further analysis shows our probabilistic method to be significantly more robust to the presence of noise in the observed network data than a simple parsimony-based approach. In addition, the integration of evidence over multiple species means that the same method may be used to improve the quality of noisy interaction data for extant species. The ancestral states of a protein interaction network have been reconstructed here by using an explicit probabilistic model of network evolution. We anticipate that this model will form the basis of more general methods for probing the evolutionary history of biochemical networks.

摘要

随着全基因组蛋白质-蛋白质相互作用数据集可用于多种物种,进化生物学家有机会解决一些围绕这些复杂系统进化的未解答问题。可以比较不同生物的蛋白质相互作用网络,以研究基因复制、缺失和重连过程如何塑造了它们当代结构的进化。然而,目前比较多个物种观察到的网络的方法缺乏重建网络进化历史所需的系统发育背景。在这里,我们展示了概率建模如何为多个蛋白质相互作用网络的定量分析提供一个平台。我们将此技术应用于转录因子bZIP家族祖先网络的重建,发现与基于序列的预测亮氨酸拉链相互作用的另一种方法取得了极好的一致性。进一步分析表明,我们的概率方法比简单的基于简约法的方法对观察到的网络数据中的噪声存在具有显著更强的鲁棒性。此外,整合多个物种的证据意味着可以使用相同的方法来提高现存物种噪声相互作用数据的质量。这里通过使用网络进化的显式概率模型重建了蛋白质相互作用网络的祖先状态。我们预计这个模型将成为探索生化网络进化历史更通用方法的基础。

相似文献

1
Reconstruction of ancestral protein interaction networks for the bZIP transcription factors.bZIP转录因子的祖先蛋白质相互作用网络的重建
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20449-53. doi: 10.1073/pnas.0706339104. Epub 2007 Dec 12.

引用本文的文献

10
Parsimonious reconstruction of network evolution.网络进化的简约重建
Algorithms Mol Biol. 2012 Sep 19;7(1):25. doi: 10.1186/1748-7188-7-25.

本文引用的文献

5
Functional analysis of gene duplications in Saccharomyces cerevisiae.酿酒酵母基因重复的功能分析。
Genetics. 2007 Feb;175(2):933-43. doi: 10.1534/genetics.106.064329. Epub 2006 Dec 6.
8
Cross-species analysis of biological networks by Bayesian alignment.通过贝叶斯比对进行生物网络的跨物种分析。
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10967-72. doi: 10.1073/pnas.0602294103. Epub 2006 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验