Patro Rob, Sefer Emre, Malin Justin, Marçais Guillaume, Navlakha Saket, Kingsford Carl
Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
Algorithms Mol Biol. 2012 Sep 19;7(1):25. doi: 10.1186/1748-7188-7-25.
Understanding the evolution of biological networks can provide insight into how their modular structure arises and how they are affected by environmental changes. One approach to studying the evolution of these networks is to reconstruct plausible common ancestors of present-day networks, allowing us to analyze how the topological properties change over time and to posit mechanisms that drive the networks' evolution. Further, putative ancestral networks can be used to help solve other difficult problems in computational biology, such as network alignment.
We introduce a combinatorial framework for encoding network histories, and we give a fast procedure that, given a set of gene duplication histories, in practice finds network histories with close to the minimum number of interaction gain or loss events to explain the observed present-day networks. In contrast to previous studies, our method does not require knowing the relative ordering of unrelated duplication events. Results on simulated histories and real biological networks both suggest that common ancestral networks can be accurately reconstructed using this parsimony approach. A software package implementing our method is available under the Apache 2.0 license at http://cbcb.umd.edu/kingsford-group/parana.
Our parsimony-based approach to ancestral network reconstruction is both efficient and accurate. We show that considering a larger set of potential ancestral interactions by not assuming a relative ordering of unrelated duplication events can lead to improved ancestral network inference.
了解生物网络的进化有助于洞察其模块化结构的形成方式以及它们如何受到环境变化的影响。研究这些网络进化的一种方法是重建当今网络可能的共同祖先,这使我们能够分析拓扑特性如何随时间变化,并推测驱动网络进化的机制。此外,推测的祖先网络可用于帮助解决计算生物学中的其他难题,如网络比对。
我们引入了一个用于编码网络历史的组合框架,并给出了一个快速程序,该程序在给定一组基因复制历史的情况下,实际上能找到具有接近最小数量相互作用增益或损失事件的网络历史,以解释观察到的当今网络。与先前的研究不同,我们的方法不需要知道不相关复制事件的相对顺序。对模拟历史和真实生物网络的结果均表明,使用这种简约方法可以准确重建共同祖先网络。一个实现我们方法的软件包可在http://cbcb.umd.edu/kingsford-group/parana上根据Apache 2.0许可获取。
我们基于简约的祖先网络重建方法既高效又准确。我们表明,通过不假设不相关复制事件的相对顺序来考虑更大的潜在祖先相互作用集,可以改进祖先网络推断。