Suppr超能文献

雷诺嗪对肌肉型Nav1.4和神经元型Nav1.7电压门控性钠离子通道亚型的状态和使用依赖性阻滞

State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.

作者信息

Wang Ging Kuo, Calderon Joanna, Wang Sho-Ya

机构信息

Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Pharmacol. 2008 Mar;73(3):940-8. doi: 10.1124/mol.107.041541. Epub 2007 Dec 13.

Abstract

Ranolazine is an antianginal agent that targets a number of ion channels in the heart, including cardiac voltage-gated Na(+) channels. However, ranolazine block of muscle and neuronal Na(+) channel isoforms has not been examined. We compared the state- and use-dependent ranolazine block of Na(+) currents carried by muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.7 isoforms expressed in human embryonic kidney 293T cells. Resting and inactivated block of Na(+) channels by ranolazine were generally weak, with a 50% inhibitory concentration (IC(50)) >/= 60 microM. Use-dependent block of Na(+) channel isoforms by ranolazine during repetitive pulses (+50 mV/10 ms at 5 Hz) was strong at 100 microM, up to 77% peak current reduction for Nav1.4, 67% for Nav1.5, and 83% for Nav1.7. In addition, we found conspicuous time-dependent block of inactivation-deficient Nav1.4, Nav1.5, and Nav1.7 Na(+) currents by ranolazine with estimated IC(50) values of 2.4, 6.2, and 1.7 microM, respectively. On- and off-rates of ranolazine were 8.2 microM(-1) s(-1) and 22 s(-1), respectively, for Nav1.4 open channels and 7.1 microM(-1) s(-1) and 14 s(-1), respectively, for Nav1.7 counterparts. A F1579K mutation at the local anesthetic receptor of inactivation-deficient Nav1.4 Na(+) channels reduced the potency of ranolazine approximately 17-fold. We conclude that: 1) both muscle and neuronal Na(+) channels are as sensitive to ranolazine block as their cardiac counterparts; 2) at its therapeutic plasma concentrations, ranolazine interacts predominantly with the open but not resting or inactivated Na(+) channels; and 3) ranolazine block of open Na(+) channels is via the conserved local anesthetic receptor albeit with a relatively slow on-rate.

摘要

雷诺嗪是一种抗心绞痛药物,作用于心脏中的多种离子通道,包括心脏电压门控钠通道(Na(+)通道)。然而,雷诺嗪对肌肉和神经元钠通道亚型的阻滞作用尚未得到研究。我们比较了在人胚肾293T细胞中表达的肌肉型Nav1.4、心脏型Nav1.5和神经元型Nav1.7亚型所携带的钠电流在状态和使用依赖性方面的雷诺嗪阻滞情况。雷诺嗪对钠通道的静息和失活阻滞作用通常较弱,半数抑制浓度(IC(50))≥60 μM。在重复脉冲期间(5 Hz时+50 mV/10 ms),雷诺嗪对钠通道亚型的使用依赖性阻滞在100 μM时较强,Nav1.4的峰值电流降低高达77%,Nav1.5为67%,Nav1.7为83%。此外,我们发现雷诺嗪对失活缺陷型Nav1.4、Nav1.5和Nav1.7钠电流有明显的时间依赖性阻滞,估计IC(50)值分别为2.4、6.2和1.7 μM。对于Nav1.4开放通道,雷诺嗪的结合和解离速率分别为8.2 μM(-1) s(-1)和22 s(-1),对于Nav1.7对应通道分别为7.1 μM(-1) s(-1)和14 s(-1)。失活缺陷型Nav1.4钠通道的局部麻醉药受体处的F1579K突变使雷诺嗪的效力降低了约17倍。我们得出以下结论:1)肌肉和神经元钠通道对雷诺嗪阻滞的敏感性与心脏钠通道相当;2)在其治疗血浆浓度下,雷诺嗪主要与开放的而非静息或失活的钠通道相互作用;3)雷诺嗪对开放钠通道的阻滞是通过保守的局部麻醉药受体,尽管结合速率相对较慢。

相似文献

1
State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
Mol Pharmacol. 2008 Mar;73(3):940-8. doi: 10.1124/mol.107.041541. Epub 2007 Dec 13.
2
Block of tetrodotoxin-sensitive, Na(V)1.7 and tetrodotoxin-resistant, Na(V)1.8, Na+ channels by ranolazine.
Channels (Austin). 2008 Nov-Dec;2(6):449-60. doi: 10.4161/chan.2.6.7362. Epub 2008 Nov 7.
3
Ranolazine block of human Na v 1.4 sodium channels and paramyotonia congenita mutants.
Channels (Austin). 2011 Mar-Apr;5(2):161-72. doi: 10.4161/chan.5.2.14851. Epub 2011 Mar 1.
4
Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action.
Br J Pharmacol. 2006 May;148(1):16-24. doi: 10.1038/sj.bjp.0706709.
5
Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H288-99. doi: 10.1152/ajpheart.00539.2010. Epub 2010 Nov 12.
6
Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action.
Circulation. 2012 Jun 5;125(22):2698-706. doi: 10.1161/CIRCULATIONAHA.112.094714. Epub 2012 May 7.
7
State-dependent mibefradil block of Na+ channels.
Mol Pharmacol. 2004 Dec;66(6):1652-61. doi: 10.1124/mol.66.6.1652.
9
Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channels.
J Physiol. 2004 Feb 1;554(Pt 3):621-33. doi: 10.1113/jphysiol.2003.054973. Epub 2003 Nov 7.
10
State-dependent block of wild-type and inactivation-deficient Na+ channels by flecainide.
J Gen Physiol. 2003 Sep;122(3):365-74. doi: 10.1085/jgp.200308857. Epub 2003 Aug 11.

引用本文的文献

2
Ranolazine Attenuates Brain Inflammation in a Rat Model of Type 2 Diabetes.
Int J Mol Sci. 2022 Dec 18;23(24):16160. doi: 10.3390/ijms232416160.
5
Block of Voltage-Gated Sodium Channels as a Potential Novel Anti-cancer Mechanism of TIC10.
Front Pharmacol. 2021 Oct 21;12:737637. doi: 10.3389/fphar.2021.737637. eCollection 2021.
7
Tetrodotoxin-Sensitive Neuronal-Type Na Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation.
J Am Heart Assoc. 2020 Jun 2;9(11):e015119. doi: 10.1161/JAHA.119.015119. Epub 2020 May 29.
8
Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels.
Front Pharmacol. 2019 Nov 26;10:1367. doi: 10.3389/fphar.2019.01367. eCollection 2019.
9
Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2945-2954. doi: 10.1073/pnas.1817446116. Epub 2019 Feb 6.
10
Atrial-ventricular differences in rabbit cardiac voltage-gated Na currents: Basis for atrial-selective block by ranolazine.
Heart Rhythm. 2017 Nov;14(11):1657-1664. doi: 10.1016/j.hrthm.2017.06.012. Epub 2017 Jun 10.

本文引用的文献

2
Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
J Physiol. 2007 Jun 1;581(Pt 2):741-55. doi: 10.1113/jphysiol.2007.130161. Epub 2007 Mar 15.
4
Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload.
Heart. 2006 Jul;92 Suppl 4(Suppl 4):iv1-iv5. doi: 10.1136/hrt.2005.078782.
5
Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions.
Circulation. 2006 May 23;113(20):2462-72. doi: 10.1161/CIRCULATIONAHA.105.597500.
6
Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action.
Br J Pharmacol. 2006 May;148(1):16-24. doi: 10.1038/sj.bjp.0706709.
7
State-dependent block of human cardiac hNav1.5 sodium channels by propafenone.
J Membr Biol. 2005 Sep;207(1):35-43. doi: 10.1007/s00232-005-0801-4.
8
Inherited disorders of voltage-gated sodium channels.
J Clin Invest. 2005 Aug;115(8):1990-9. doi: 10.1172/JCI25505.
9
Interactions of local anesthetics with voltage-gated Na+ channels.
J Membr Biol. 2004 Sep 1;201(1):1-8. doi: 10.1007/s00232-004-0702-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验