Suppr超能文献

修订版服务水平量表(LSI-R)在预测长期监禁后的累犯情况中的效用。

Utility of the Revised Level of Service Inventory (LSI-R) in predicting recidivism after long-term incarceration.

作者信息

Manchak Sarah M, Skeem Jennifer Lynne, Douglas Kevin S

机构信息

Department of Psychology and Social Behavior, University of California, Irvine, 3311 Social Ecology II, Irvine, CA, 92697-7085, USA.

出版信息

Law Hum Behav. 2008 Dec;32(6):477-88. doi: 10.1007/s10979-007-9118-4. Epub 2007 Dec 13.

Abstract

Assessing an inmate's risk for recidivism may become more challenging as the length of incarceration increases. Although the population of Long-Term Inmates (LTIs) is burgeoning, no risk assessment tools have been specifically validated for this group. Based on a sample of 1,144 inmates released in a state without parole, we examine the utility of the Level of Service Inventory-Revised (LSI-R) in assessing risk of general and violent felony recidivism for LTIs (n = 555). Results indicate that (a) the LSI-R moderately predicts general, but not necessarily violent, recidivism, and (b) this predictive utility is not moderated by LTI status, and is based in part on ostensibly dynamic risk factors. Implications for informing parole decision-making and risk management for LTIs are discussed.

摘要

随着监禁时间的增加,评估囚犯再次犯罪的风险可能会变得更具挑战性。尽管长期囚犯(LTIs)的数量正在迅速增长,但尚未有专门针对该群体验证的风险评估工具。基于一个无假释制度的州释放的1144名囚犯样本,我们研究了修订版服务水平量表(LSI-R)在评估长期囚犯(n = 555)一般和暴力重罪再犯风险方面的效用。结果表明:(a)LSI-R适度预测一般再犯,但不一定能预测暴力再犯;(b)这种预测效用不受长期囚犯身份的影响,且部分基于表面上的动态风险因素。本文讨论了这些结果对长期囚犯假释决策和风险管理的启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验