Suppr超能文献

在种族群体评估中实现公平需要对个体进行评估。

Implementing fairness in racial-group assessment requires assessment of individuals.

作者信息

Helms Janet E

机构信息

Department of Counseling, Developmental, and Educational Psychology, Boston College, Chestnut Hill, MA 02467, USA.

出版信息

Am Psychol. 2007 Dec;62(9):1083-5. doi: 10.1037/0003-066X.62.9.1083.

Abstract

Replies to comments by R. J. Griffore and D. A. Newman et al on the author's original article on test validity and cultural bias in racial-group assessment. Helms notes that, given that within-group variance exceeds between-groups variance, racial groups are probably simulating a psychological construct that is more strongly related to individuals' test scores than to their respective racial group's mean test scores. Therefore, models of individual differences, such as her Helms individual-differences (HID) model, that remove construct-irrelevant racial variance, are needed to make the testing process fair at the level of individual African American, Latino/Latina American, and Native American test takers. Her HID model is intended to focus attention on identifying the factors responsible for the racial-group-level differences and, thereby, assist test users to look beyond presumed physical appearance (e.g., racial-group designations) for explanations of individuals' cognitive abilities, knowledge, or skills test scores.

摘要

对R. J. 格里福尔和D. A. 纽曼等人就作者关于种族群体评估中测试效度和文化偏差的原创文章所提评论的回复。赫尔姆斯指出,鉴于组内方差超过组间方差,种族群体可能是在模拟一种心理结构,这种结构与个体的测试分数的关联比与他们各自种族群体的平均测试分数的关联更强。因此,需要像她的赫尔姆斯个体差异(HID)模型这样的个体差异模型,去除与结构无关的种族方差,以使非裔美国、拉丁裔美国和美国原住民个体考生层面的测试过程公平。她的HID模型旨在将注意力集中于识别造成种族群体层面差异的因素,从而帮助测试使用者超越假定的外表(如种族群体标识)去解释个体的认知能力、知识或技能测试分数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验