Suppr超能文献

细胞外电压阈值设置可以进行调整,以实现对运动和刺激参数的最佳编码。

Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

作者信息

Oby Emily R, Perel Sagi, Sadtler Patrick T, Ruff Douglas A, Mischel Jessica L, Montez David F, Cohen Marlene R, Batista Aaron P, Chase Steven M

机构信息

Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

J Neural Eng. 2016 Jun;13(3):036009. doi: 10.1088/1741-2560/13/3/036009. Epub 2016 Apr 21.

Abstract

OBJECTIVE

A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1).

APPROACH

We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings.

MAIN RESULTS

The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography.

SIGNIFICANCE

How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

摘要

目的

使用细胞外电极进行神经记录的一个传统目标是分离单个神经元的动作电位波形。最近,在脑机接口(BCI)中,人们认识到电压波形的阈值穿越事件也传达了丰富的信息。迄今为止,检测阈值穿越的阈值是为了保持单个神经元的分离而选择的。然而,用于单神经元识别的最佳阈值不一定是信息提取的最佳阈值。在这里,我们介绍一种确定从细胞外记录中提取信息的最佳阈值的方法。我们在两种不同的情况下应用此方法:从初级运动皮层(M1)的神经活动中编码运动学参数,以及从初级视觉皮层(V1)的神经活动中编码视觉刺激参数。

方法

我们从植入猴子M1或V1的多电极阵列进行细胞外记录。然后,我们系统地扫描电压检测阈值,并量化相应阈值穿越所传达的信息。

主要结果

最佳阈值取决于所需信息。在M1中,速度在高于速度的阈值下得到最佳编码;在这两种情况下,最佳阈值都低于BCI应用中通常使用的阈值。在V1中,关于视觉刺激方向的信息在高于视觉对比度的阈值下得到最佳编码。一个概念模型将这些结果解释为皮层拓扑结构的结果。

意义

神经信号的处理方式会影响可以从中提取的信息。阈值穿越中包含的信息的类型和质量都取决于阈值设置。这些信号中可用的信息比通常提取的要多。在BCI环境中将检测阈值调整到感兴趣的参数应该会提高我们解码运动意图的能力,从而增强BCI控制。此外,通过扫描检测阈值,可以深入了解附近神经组织的拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e268/5931220/a824a93b5c4e/nihms959102f1.jpg

相似文献

3
A freely-moving monkey treadmill model.一种自由活动的猴子跑步机模型。
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.

引用本文的文献

4
Single-neuronal predictions of others' beliefs in humans.人类对他人信念的单神经元预测。
Nature. 2021 Mar;591(7851):610-614. doi: 10.1038/s41586-021-03184-0. Epub 2021 Jan 27.
7
Power-saving design opportunities for wireless intracortical brain-computer interfaces.无线脑机接口的节能设计机会。
Nat Biomed Eng. 2020 Oct;4(10):984-996. doi: 10.1038/s41551-020-0595-9. Epub 2020 Aug 3.

本文引用的文献

3
Past, present and future of spike sorting techniques.尖峰分类技术的过去、现在与未来。
Brain Res Bull. 2015 Oct;119(Pt B):106-17. doi: 10.1016/j.brainresbull.2015.04.007. Epub 2015 Apr 27.
5
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.
9
Bayesian decoding using unsorted spikes in the rat hippocampus.大鼠海马体中未排序尖峰的贝叶斯解码。
J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.
10
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验