Suppr超能文献

细胞外电压阈值设置可以进行调整,以实现对运动和刺激参数的最佳编码。

Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

作者信息

Oby Emily R, Perel Sagi, Sadtler Patrick T, Ruff Douglas A, Mischel Jessica L, Montez David F, Cohen Marlene R, Batista Aaron P, Chase Steven M

机构信息

Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

J Neural Eng. 2016 Jun;13(3):036009. doi: 10.1088/1741-2560/13/3/036009. Epub 2016 Apr 21.

Abstract

OBJECTIVE

A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1).

APPROACH

We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings.

MAIN RESULTS

The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography.

SIGNIFICANCE

How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

摘要

目的

使用细胞外电极进行神经记录的一个传统目标是分离单个神经元的动作电位波形。最近,在脑机接口(BCI)中,人们认识到电压波形的阈值穿越事件也传达了丰富的信息。迄今为止,检测阈值穿越的阈值是为了保持单个神经元的分离而选择的。然而,用于单神经元识别的最佳阈值不一定是信息提取的最佳阈值。在这里,我们介绍一种确定从细胞外记录中提取信息的最佳阈值的方法。我们在两种不同的情况下应用此方法:从初级运动皮层(M1)的神经活动中编码运动学参数,以及从初级视觉皮层(V1)的神经活动中编码视觉刺激参数。

方法

我们从植入猴子M1或V1的多电极阵列进行细胞外记录。然后,我们系统地扫描电压检测阈值,并量化相应阈值穿越所传达的信息。

主要结果

最佳阈值取决于所需信息。在M1中,速度在高于速度的阈值下得到最佳编码;在这两种情况下,最佳阈值都低于BCI应用中通常使用的阈值。在V1中,关于视觉刺激方向的信息在高于视觉对比度的阈值下得到最佳编码。一个概念模型将这些结果解释为皮层拓扑结构的结果。

意义

神经信号的处理方式会影响可以从中提取的信息。阈值穿越中包含的信息的类型和质量都取决于阈值设置。这些信号中可用的信息比通常提取的要多。在BCI环境中将检测阈值调整到感兴趣的参数应该会提高我们解码运动意图的能力,从而增强BCI控制。此外,通过扫描检测阈值,可以深入了解附近神经组织的拓扑结构。

相似文献

1
Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.
J Neural Eng. 2016 Jun;13(3):036009. doi: 10.1088/1741-2560/13/3/036009. Epub 2016 Apr 21.
2
Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics.
J Neurophysiol. 2015 Sep;114(3):1500-12. doi: 10.1152/jn.00293.2014. Epub 2015 Jul 1.
3
A freely-moving monkey treadmill model.
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.
5
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
J Neural Eng. 2014 Oct;11(5):056005. doi: 10.1088/1741-2560/11/5/056005. Epub 2014 Aug 1.
6
Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
J Neural Eng. 2019 Jun;16(3):036011. doi: 10.1088/1741-2552/ab0bfb. Epub 2019 Mar 1.
7
Non-causal spike filtering improves decoding of movement intention for intracortical BCIs.
J Neurosci Methods. 2014 Oct 30;236:58-67. doi: 10.1016/j.jneumeth.2014.08.004. Epub 2014 Aug 13.
8
Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41. doi: 10.1109/TNSRE.2005.857687.
10
Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
Brain Res Bull. 2015 Aug;117:69-80. doi: 10.1016/j.brainresbull.2015.07.007. Epub 2015 Jul 26.

引用本文的文献

1
Semantic encoding during language comprehension at single-cell resolution.
Nature. 2024 Jul;631(8021):610-616. doi: 10.1038/s41586-024-07643-2. Epub 2024 Jul 3.
3
Temporally precise population coding of dynamic sounds by auditory cortex.
J Neurophysiol. 2021 Jul 1;126(1):148-169. doi: 10.1152/jn.00709.2020. Epub 2021 Jun 2.
4
Single-neuronal predictions of others' beliefs in humans.
Nature. 2021 Mar;591(7851):610-614. doi: 10.1038/s41586-021-03184-0. Epub 2021 Jan 27.
5
The Neurophysiological Representation of Imagined Somatosensory Percepts in Human Cortex.
J Neurosci. 2021 Mar 10;41(10):2177-2185. doi: 10.1523/JNEUROSCI.2460-20.2021. Epub 2021 Jan 22.
6
Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus.
J Neural Eng. 2020 Nov 25;17(6):066007. doi: 10.1088/1741-2552/abbfef.
7
Power-saving design opportunities for wireless intracortical brain-computer interfaces.
Nat Biomed Eng. 2020 Oct;4(10):984-996. doi: 10.1038/s41551-020-0595-9. Epub 2020 Aug 3.
9
A neural network for online spike classification that improves decoding accuracy.
J Neurophysiol. 2020 Apr 1;123(4):1472-1485. doi: 10.1152/jn.00641.2019. Epub 2020 Feb 26.

本文引用的文献

1
Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics.
J Neurophysiol. 2015 Sep;114(3):1500-12. doi: 10.1152/jn.00293.2014. Epub 2015 Jul 1.
2
Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
Neural Comput. 2015 Jul;27(7):1438-60. doi: 10.1162/NECO_a_00744. Epub 2015 May 14.
3
Past, present and future of spike sorting techniques.
Brain Res Bull. 2015 Oct;119(Pt B):106-17. doi: 10.1016/j.brainresbull.2015.04.007. Epub 2015 Apr 27.
4
Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance.
J Neural Eng. 2015 Feb;12(1):016009. doi: 10.1088/1741-2560/12/1/016009. Epub 2014 Dec 11.
5
Neural constraints on learning.
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.
6
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
J Neural Eng. 2014 Oct;11(5):056005. doi: 10.1088/1741-2560/11/5/056005. Epub 2014 Aug 1.
7
Motor cortical control of movement speed with implications for brain-machine interface control.
J Neurophysiol. 2014 Jul 15;112(2):411-29. doi: 10.1152/jn.00391.2013. Epub 2014 Apr 9.
8
A brain-machine interface enables bimanual arm movements in monkeys.
Sci Transl Med. 2013 Nov 6;5(210):210ra154. doi: 10.1126/scitranslmed.3006159.
9
Bayesian decoding using unsorted spikes in the rat hippocampus.
J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.
10
High-performance neuroprosthetic control by an individual with tetraplegia.
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验