Oby Emily R, Perel Sagi, Sadtler Patrick T, Ruff Douglas A, Mischel Jessica L, Montez David F, Cohen Marlene R, Batista Aaron P, Chase Steven M
Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
J Neural Eng. 2016 Jun;13(3):036009. doi: 10.1088/1741-2560/13/3/036009. Epub 2016 Apr 21.
A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1).
We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings.
The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography.
How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.
使用细胞外电极进行神经记录的一个传统目标是分离单个神经元的动作电位波形。最近,在脑机接口(BCI)中,人们认识到电压波形的阈值穿越事件也传达了丰富的信息。迄今为止,检测阈值穿越的阈值是为了保持单个神经元的分离而选择的。然而,用于单神经元识别的最佳阈值不一定是信息提取的最佳阈值。在这里,我们介绍一种确定从细胞外记录中提取信息的最佳阈值的方法。我们在两种不同的情况下应用此方法:从初级运动皮层(M1)的神经活动中编码运动学参数,以及从初级视觉皮层(V1)的神经活动中编码视觉刺激参数。
我们从植入猴子M1或V1的多电极阵列进行细胞外记录。然后,我们系统地扫描电压检测阈值,并量化相应阈值穿越所传达的信息。
最佳阈值取决于所需信息。在M1中,速度在高于速度的阈值下得到最佳编码;在这两种情况下,最佳阈值都低于BCI应用中通常使用的阈值。在V1中,关于视觉刺激方向的信息在高于视觉对比度的阈值下得到最佳编码。一个概念模型将这些结果解释为皮层拓扑结构的结果。
神经信号的处理方式会影响可以从中提取的信息。阈值穿越中包含的信息的类型和质量都取决于阈值设置。这些信号中可用的信息比通常提取的要多。在BCI环境中将检测阈值调整到感兴趣的参数应该会提高我们解码运动意图的能力,从而增强BCI控制。此外,通过扫描检测阈值,可以深入了解附近神经组织的拓扑结构。