Lenzen S
Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany.
Diabetologia. 2008 Feb;51(2):216-26. doi: 10.1007/s00125-007-0886-7. Epub 2007 Dec 18.
Alloxan and streptozotocin are toxic glucose analogues that preferentially accumulate in pancreatic beta cells via the GLUT2 glucose transporter. In the presence of intracellular thiols, especially glutathione, alloxan generates reactive oxygen species (ROS) in a cyclic redox reaction with its reduction product, dialuric acid. Autoxidation of dialuric acid generates superoxide radicals, hydrogen peroxide and, in a final iron-catalysed reaction step, hydroxyl radicals. These hydroxyl radicals are ultimately responsible for the death of the beta cells, which have a particularly low antioxidative defence capacity, and the ensuing state of insulin-dependent 'alloxan diabetes'. As a thiol reagent, alloxan also selectively inhibits glucose-induced insulin secretion through its ability to inhibit the beta cell glucose sensor glucokinase. Following its uptake into the beta cells, streptozotocin is split into its glucose and methylnitrosourea moiety. Owing to its alkylating properties, the latter modifies biological macromolecules, fragments DNA and destroys the beta cells, causing a state of insulin-dependent diabetes. The targeting of mitochondrial DNA, thereby impairing the signalling function of beta cell mitochondrial metabolism, also explains how streptozotocin is able to inhibit glucose-induced insulin secretion.
四氧嘧啶和链脲佐菌素是有毒的葡萄糖类似物,它们通过GLUT2葡萄糖转运蛋白优先在胰腺β细胞中积累。在细胞内硫醇(尤其是谷胱甘肽)存在的情况下,四氧嘧啶与其还原产物双尿酸在循环氧化还原反应中产生活性氧(ROS)。双尿酸的自氧化产生超氧自由基、过氧化氢,并且在最后的铁催化反应步骤中产生羟基自由基。这些羟基自由基最终导致抗氧化防御能力特别低的β细胞死亡,以及随之而来的胰岛素依赖型“四氧嘧啶糖尿病”状态。作为一种硫醇试剂,四氧嘧啶还通过抑制β细胞葡萄糖传感器葡萄糖激酶的能力,选择性地抑制葡萄糖诱导的胰岛素分泌。链脲佐菌素被β细胞摄取后,会分解成其葡萄糖和甲基亚硝基脲部分。由于其烷基化特性,后者会修饰生物大分子、使DNA片段化并破坏β细胞,导致胰岛素依赖型糖尿病状态。链脲佐菌素靶向线粒体DNA,从而损害β细胞线粒体代谢的信号功能,这也解释了链脲佐菌素如何能够抑制葡萄糖诱导的胰岛素分泌。