Suppr超能文献

阿尔茨海默病中的氧化应激与转录调控

Oxidative stress and transcriptional regulation in Alzheimer disease.

作者信息

Shi Qingli, Gibson Gary E

机构信息

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY 10605, USA.

出版信息

Alzheimer Dis Assoc Disord. 2007 Oct-Dec;21(4):276-91. doi: 10.1097/WAD.0b013e31815721c3.

Abstract

Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS. ROS are cytotoxic, and evidence of ROS-induced damage to cell membranes, proteins, and DNA in AD is overwhelming. Nevertheless, therapies based on antioxidants have been disappointing. Thus, alternative strategies are necessary. ROS also act as signaling molecules including for transcription. Thus, chronic exposure to ROS in AD could activate cascades of genes. Although initially protective, prolonged activation may be damaging. Thus, therapeutic approaches based on modulation of these gene cascades may lead to effective therapies. Genes involved in several pathways including antioxidant defense, detoxification, inflammation, etc, are induced in response to oxidative stress and in AD. However, genes that are associated with energy metabolism, which is necessary for normal brain function, are mostly down-regulated. Redox-sensitive transcription factors such as activator protein-1, nuclear factor-kappaB, specificity protein-1, and hypoxia-inducible factor are important in redox-dependent gene regulation. Peroxisome proliferators-activated receptor-gamma coactivator (PGC-1alpha) is a coactivator of several transcription factors and is a potent stimulator of mitochondrial biogenesis and respiration. Down-regulated expression of PGC-1alpha has been implicated in Huntington disease and in several Huntington disease animal models. PGC-1alpha role in regulation of ROS metabolism makes it a potential candidate player between ROS, mitochondria, and neurodegenerative diseases. This review summarizes the current progress on how oxidative stress regulates the expression of genes that might contribute to AD pathophysiology and the implications of the transcriptional modifications for AD. Finally, potential therapeutic strategies based on the updated understandings of redox state-dependent gene regulation in AD are proposed to overcome the lack of efficacy of antioxidant therapies.

摘要

阿尔茨海默病(AD)的定义是记忆和认知功能进行性受损,以及细胞外神经炎性斑块和细胞内神经原纤维缠结的存在。然而,氧化应激和线粒体功能受损始终伴随AD出现。线粒体是自由基[即活性氧(ROS)]产生的主要场所,也是ROS的主要作用靶点。ROS具有细胞毒性,有大量证据表明ROS在AD中会对细胞膜、蛋白质和DNA造成损伤。然而,基于抗氧化剂的治疗方法一直令人失望。因此,需要其他策略。ROS还作为信号分子发挥作用,包括参与转录过程。因此,AD中慢性暴露于ROS可能会激活基因级联反应。尽管最初具有保护作用,但长期激活可能具有损害性。因此,基于调节这些基因级联反应的治疗方法可能会带来有效的治疗方案。包括抗氧化防御、解毒、炎症等在内的多种信号通路中的基因会在氧化应激反应以及AD中被诱导表达。然而,与正常脑功能所必需的能量代谢相关的基因大多表达下调。氧化还原敏感转录因子,如活化蛋白-1、核因子-κB、特异性蛋白-1和缺氧诱导因子,在氧化还原依赖性基因调控中起重要作用。过氧化物酶体增殖物激活受体γ共激活因子(PGC-1α)是多种转录因子的共激活因子,是线粒体生物发生和呼吸的有效刺激因子。PGC-1α表达下调与亨廷顿病以及多种亨廷顿病动物模型有关。PGC-1α在ROS代谢调节中的作用使其成为ROS、线粒体和神经退行性疾病之间潜在的关键因素。本综述总结了氧化应激如何调节可能导致AD病理生理学的基因表达的当前进展,以及转录修饰对AD的影响。最后,基于对AD中氧化还原状态依赖性基因调控的最新认识,提出了潜在的治疗策略,以克服抗氧化治疗缺乏疗效的问题。

相似文献

1
Oxidative stress and transcriptional regulation in Alzheimer disease.
Alzheimer Dis Assoc Disord. 2007 Oct-Dec;21(4):276-91. doi: 10.1097/WAD.0b013e31815721c3.
2
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
4
PGC-1, Inflammation, and Oxidative Stress: An Integrative View in Metabolism.
Oxid Med Cell Longev. 2020 Mar 9;2020:1452696. doi: 10.1155/2020/1452696. eCollection 2020.
5
PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis.
Cell Death Dis. 2014 Nov 6;5(11):e1515. doi: 10.1038/cddis.2014.458.
6
PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells.
Cardiovasc Res. 2005 Jun 1;66(3):562-73. doi: 10.1016/j.cardiores.2005.01.026. Epub 2005 Feb 25.
7
Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases.
Front Biosci (Landmark Ed). 2017 Jan 1;22(5):854-872. doi: 10.2741/4521.
8
PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity.
Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1038-51. doi: 10.1167/iovs.15-17758.
10
Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression.
Toxicol Appl Pharmacol. 2013 Dec 1;273(2):365-80. doi: 10.1016/j.taap.2013.09.012. Epub 2013 Sep 29.

引用本文的文献

1
Potential link of high fat diet and mRNA expression of Alzheimer's disease-related genes in the enteric mucosa of a rat model of Alzheimer's disease.
J Alzheimers Dis Rep. 2025 Aug 12;9:25424823251358414. doi: 10.1177/25424823251358414. eCollection 2025 Jan-Dec.
2
Mitochondria: the hidden engines of traumatic brain injury-driven neurodegeneration.
Front Cell Neurosci. 2025 May 9;19:1570596. doi: 10.3389/fncel.2025.1570596. eCollection 2025.
4
Protein arginine methyltransferases as regulators of cellular stress.
Exp Neurol. 2025 Feb;384:115060. doi: 10.1016/j.expneurol.2024.115060. Epub 2024 Nov 17.
5
SIRT1 and thrombosis.
Front Mol Biosci. 2024 Jan 18;10:1325002. doi: 10.3389/fmolb.2023.1325002. eCollection 2023.
6
Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation.
Cells. 2023 Dec 20;13(1):12. doi: 10.3390/cells13010012.
8
Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease.
Neurobiol Dis. 2022 May;166:105655. doi: 10.1016/j.nbd.2022.105655. Epub 2022 Feb 8.
10
The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO.
J Med Chem. 2021 Dec 23;64(24):17656-17689. doi: 10.1021/acs.jmedchem.1c01571. Epub 2021 Dec 14.

本文引用的文献

2
Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism.
Neurobiol Dis. 2007 May;26(2):353-62. doi: 10.1016/j.nbd.2007.01.011. Epub 2007 Feb 8.
3
Oxidative damage, protein synthesis, and protein degradation in Alzheimer's disease.
Curr Alzheimer Res. 2007 Feb;4(1):73-9. doi: 10.2174/156720507779939788.
4
Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation.
J Biol Chem. 2007 Apr 13;282(15):10873-80. doi: 10.1074/jbc.M608856200. Epub 2007 Feb 15.
5
7
Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease.
Brain Res. 2007 Jan 5;1127(1):127-35. doi: 10.1016/j.brainres.2006.09.106. Epub 2006 Nov 15.
8
The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease.
J Neuroinflammation. 2006 Nov 9;3:30. doi: 10.1186/1742-2094-3-30.
9
Redox regulation of the hypoxia-inducible factor.
Biol Chem. 2006 Oct-Nov;387(10-11):1337-46. doi: 10.1515/BC.2006.167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验